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Abstract
Bayesian networks (BNs) are probabilistic graphical models used to represent dependencies and independencies among 
variables. They have been applied widely to many areas in, e.g., biology and medicine, to untangle complex interrela-
tionships, and are now finding wider use in areas such as social science with differing data features, for example highly 
polychotomous (multi-category) data. To construct BNs, scoring functions guide selection of the most appropriate model. 
Among these, the BDe scoring function requires specifying hyperparameters that influence the priors on the network 
parameters. This study evaluates the performance of four scoring functions—AIC, BIC, BDe, and log-likelihood—par-
ticularly with highly polychotomous data. We assessed the overall performance of the scoring function, and for BDe, we 
varied its hyperparameter to evaluate its impact. Performance of the scoring functions was significantly influenced by the 
number of nodes, network complexity, and sample size. BIC and BDe (with default hyperparameters) generally offered 
higher precision, especially with larger sample sizes, while log-likelihood tended to overfit, showing high recall but low 
precision. AIC and BDe required careful tuning based on discrete levels and sample sizes. Optimizing the hyperparam-
eters in BDe was crucial for balancing model complexity and fit. We propose a simulation method for identifying the 
optimum hyperparameters for using BDe scoring function in real-world data applications. The study provides insights to 
enhance BN models’ robustness and accuracy, emphasizing the importance of considering sample size and the number 
of discrete levels when selecting and tuning scoring functions for BN structure learning.

Keywords Bayesian networks · Structure learning · Scoring functions · Polychotomous data

1 Introduction

Bayesian networks (BNs) are a class of probabilistic graphical model that are composed of a directed acyclic graph (DAG) that 
encodes the independence relationships between variables, with parameters describing their distributions. They were firstly 
proposed by Pearl [1]. They have been used across a wide variety of fields, from gene expression to social science to unravel 
relationships in complex, interconnected systems [2–5]. Newer applications in areas such as social science face challenges 
in dealing with high numbers of discrete levels, for example, many geographical sampling locations [6] or high number of 
ethnicity categories [7, 8]. Here we explore in particular BN structure learning in highly polychotomous (multi-category data).

In BN structure learning, there are three main approaches: constraint-based structure learning, score-based structure 
learning and Bayesian model averaging, with the score-based and the constraint-based approaches being widely recognized 
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[9]. Score-based learning approaches are more often applied in real-data scenarios than others. Unlike constraint-based 
learning, which relies on testing dependencies and can be biased by a single test failure, and unlike Bayesian model averag-
ing, which is impractical for averaging predictions of all possible structures, score-based approaches are more accurate and 
versatile [9]. They utilize a scoring function to assess how well a structure fits the observed data, identifying the best network 
structure as the one with the highest score [10]. Given that the number of possible structures is superexponential and the 
problem is usually NP-hard, heuristic search techniques are necessary to find the highest-scoring network [11]. This requires 
high computational resources, especially in large-scale networks, making the choice of scoring function important [9, 11]. 
In this study, we focus on the scoring functions used in the score-based learning approach.

Several popular scoring functions are used in score-based learning in BNs, including the Bayesian Dirichlet equivalence 
score (BDe) [12], Akaike’s information criterion (AIC) [13], Bayesian information criterion (BIC) [14], K2 [10], and mutual informa-
tion tests (MIT) [15], among others [16, 17]. BIC is conceptually similar to the minimum description length (MDL) [18]. These 
scoring functions can be categorized based on their applicability to either discrete or continuous data, with some being 
versatile enough to accommodate both. Among the most popular, BDe works exclusively for discrete data, while AIC and 
BIC are applicable to both continuous and discrete data. The multinomial log-likelihood is also used for discrete data [19]. In 
this study, we focus on four scoring functions: AIC, BIC, BDe and log-likelihood. The first three are widely used and suitable 
for discrete data, while log-likelihood is included as a basic reference point.

Many scoring functions take the form of penalized log-likelihood functions, which penalize the complexity of network 
structures to avoid overfitting and enhance model generalization [20]. Such scoring functions are referred to as likelihood 
scores [9]. Among the four scoring functions we focus on, log-likelihood, AIC, and BIC are all likelihood scores.

Without the penalty term, the log-likelihood is the log probability of the data given the structure log P(D ∣ G) , in which D 
represents data and G represents the structure. Intuitively, one aims to maximize the model’s likelihood to make the observed 
data as likely as possible [9]. A higher log-likelihood indicates a better fit. In the detailed decomposed form of log-likelihood, 
as shown in Eq. 1 and defined in Table 1, ln P(Xi = k ∣ Pa(Xi) = j) can be interpreted as part of the strength of the dependence 
between variable Xi and its parents Pa(Xi) . Thus, in log-likelihood, the preference is for network structures where the parents of 
each variables provide substantial information for predicting it. In other words, it favors more complex networks over simpler 
ones. Consequently, a fully connected network is often the maximum likelihood network, which can lead to overfitting [9].

The AIC scoring function is derived from information theory and is based on the asymptotic properties of maximum 
likelihood estimators, assuming a large sample size. This means its effectiveness improves as the sample size grows larger 
[13, 21]. Unlike the log-likelihood, AIC aims to minimize the score for better fits, as indicated by Eq. 2 and the definitions 
in Table 1. Its penalty term, 2k, penalizes the complexity of the network by accounting for the number of parameters, 
thus helping to prevent overfitting.

(1)ln(L̂) =

n
∑

i=1

qi
∑

j=1

ri
∑

k=1

Nijk ln P(Xi = k ∣ Pa(Xi) = j)

Table 1  List of symbol definitions for the four scoring functions: AIC, BIC, BDe, and log-likelihood

Symbol Notions

• ln(L̂) : log-likelihood of the model given the data
• P(Xi = k ∣ Pa(Xi) = j) : Conditional probability of Xi = k given the parent configuration Pa(Xi) = j

• k : Number of independent parameters in the model
• N : Number of data points (samples)
• n : Number of nodes in the Bayesian network
• qi : Number of different configurations of the parent set Pa(Xi) for node Xi
• ri : Number of states of node Xi
• Nijk : Count of instances where Xi = k and Pa(Xi) = j

• Nij : Count of instances where the parents of Xi are in configuration j
• �ij : Hyperparameter for the Dirichlet prior associated with the parent configuration j of Xi
• �ijk : Hyperparameter for the Dirichlet prior associated with the state k of Xi given the parent configuration j
• Γ(⋅) : Gamma function, an extension of the factorial function
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The BIC scoring function has a higher penalty term than AIC. The penalty term for BIC is k ln(N) , as shown in Eq. 3 and 
defined in Table 1, where k is the number of parameters and N is the number of data points. This penalty increases with 
both the number of parameters and the logarithm of the sample size. In contrast, the penalty term for AIC is 2k, which 
increases only with the number of parameters and is independent of the sample size. Because ln(N) is typically greater 
than 2 for most sample sizes, BIC imposes a higher penalty for model complexity than AIC does. This makes BIC more 
conservative, favoring simpler models, especially as the sample size grows larger [20].

The BDe scoring function does not have a penalty term in the same way that AIC or BIC do, making it more complex, as 
detailed in Eq. 4 and Table 1. As a Bayesian score, BDe originated from the Bayesian Dirichlet (BD) scoring function, which 
incorporates prior knowledge into the scoring process through a Dirichlet prior. This prior influences the score based 
on both the data and the specified priors [10]. The count of instances Nij , where the parents of each variable Xi are in 
each configuration Pa(Xi) = j , is the summation of instances where the variable Xi is at each state k and its parents are in 
the same configuration, as shown in Eq. 5. The Dirichlet prior is a prior distribution of the data before any actual data is 
observed, characterized by hyperparameters �ij and �ijk . Similarly, �ij is the summation of �ijk for every state k of variable 
Xi , as shown in Eq. 6 and defined in Table 1.

To overcome the limitations of the original BD scoring function, researchers introduced the BDe scoring function, 
which incorporates a new hyperparameter. This enhancement addresses the need for specifying hyperparameters for 
all possible combinations of variables and their corresponding parents, as well as resolving inconsistencies in scores for 
the structures within the same equivalence class in BD. The improved calculation of �ij is detailed in Eq. 7 and Table 1. 
This � is the sum of the Dirichlet hyperparameters for each parent configuration and each variable state, resulting in 
equivalent scores for networks within the same equivalence class. Furthermore, under the assumption that all network 
structures are equally likely, there is a uniform prior distribution over all network structures, as shown in Eq. 8. Thus, the 
new hyperparameter � is the only input value for BDe and is referred to as the imaginary sample size (iss), equivalent sample 
size, or effective sample size, as shown in Eq. 9 and Table 1. This developed version of BDe is also referred to as BDeu [12]. 
In this study, although we refer to BDe throughout, we are specifically using the BDeu variant.

In the study of BN structure learning, a crucial distinction is made between discrete and continuous variables. 
Continuous variables, common in fields such as biology, medical science, economics and other fields are often 
discretized to simplify analysis. Social science fields often deal exclusively with categorical data. This discretization 
is significant because discrete scores, which are combinatorial, fundamentally differ from continuous scores, which 

(2)AIC =2k − 2 ln(L̂)

(3)BIC =k ln(N) − 2 ln(L̂)

(4)BDe =

n
∑

i=1

qi
∑

j=1

log
Γ(�ij)

Γ(�ij + Nij)
+

ri
∑

k=1

log
Γ(�ijk + Nijk)

Γ(�ijk)

(5)Nij =

ri
∑

k=1

Nijk

(6)�ij =

ri
∑

k=1

�ijk

(7)� =

qi
∑

j=1

ri
∑

k=1

�ijk

(8)�ijk =
�

qi ⋅ ri

(9)iss = �ijk ⋅ qiri
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are additive [9]. While continuous scores aggregate influences, potentially overlooking extreme values, discrete 
scores allow for the amalgamation of information from multiple parental levels. This makes discrete scoring methods 
particularly useful when dealing with multi-category data [9]. However, discretizing continuous variables comes 
with a trade-off: the potential loss of valuable information [22]. This loss can impact the accuracy and effectiveness 
of the BN structure learning process. For example, the continuous variable age is a common demographic feature in 
social science. One often needs to discretize it into certain age groups, such as 18–34 for early career, 35–54 for mid-
career, and above 55 for late career in workforce analysis. However, more granular information that characterizes the 
underlying patterns of the data is lost during this process. Although increasing the number of discretized groups can 
increase model complexity and lead to problems such as high computational burden, it is necessary to make use the 
most of the survey data for analysis. Recognizing this challenge, this study focuses on the analysis of polychotomous 
(multi-category) data. By simulating various scenarios, we aim to understand the performance of four scoring 
functions—AIC, log-likelihood, BIC, and BDe—in capturing the true network structure.

Some studies have systematically evaluated the performance of common scoring functions [20, 23–25], 
as summarized in Table 2. However, there is a lack of assessment regarding their effectiveness when applied to 
polychotomous data. In an empirical evaluation, researchers tested the uniform prior score metric (UPSM), conditional 
uniform prior score metric (CUPSM), Dirichlet prior score metric (DPSM), BDe and MDL/BIC scoring functions using 
the three-node, five-node, and the ALARM network with a maximum of four discrete levels. They used data points 
ranging from 1000 to 10,000 and concluded that DPSM performs better than MDL/BIC, followed by CUPSM, UPSM, 
and BDe [23]. Another study, involving simulations of 13 gold standard networks, each with fewer than 25 variables 
and an average of fewer than 3 parents per node, examined 18 different data sizes ranging from 200 to 10,000. The 
study found that BIC performs better than AIC and BDe when the data is sufficient. AIC performs similarly to BDe but 
its performance is erratic and unpredictable [20]. Additionally, a simulation study with 10 variables and data points 
ranging from 200 to 1200, using binary variables, concluded that AIC is better than MDL/BIC at high sample sizes [24]. 
Furthermore, in a simulation with 20 variables, each having 3 discrete levels, and 2000 data points, BDe performed 
better than BIC. When the data size was reduced to 100 data points, BDe recovered some information while BIC found 
no links at all, suggesting that BIC over-penalizes complexity relative to the BDe with small quantities of data [3]. 
One study of particular interest explored a wide variety of networks ranging from small binary networks to a large 
polychotomous network (417 nodes, up to 21 discrete levels per node) [25]. They found that the BIC score generally 
outpeformed AIC, BDe and K2, except for small networks with high data amounts where the BDe score performed 
best. While not highlighted by the authors, the results show that only for their most polychotomous network, the AIC 
outperformed all other scores [25]. These studies indicate that the number of nodes, network complexity, and sample 
sizes all impact the performance of scoring functions in BN structure learning. However, the role of the number of 
discrete levels in each categorical variable remains under-explored.

The role of the hyperparameter iss � in the BDe score remains unclear in BN structure learning, particularly when 
dealing with polychotomous data. It has been observed that when � approaches zero, it leads to an empty network 
structure, whereas large � values tend to result in complete network structures [26]. Further empirical simulations 
confirmed that the performance of BDe is highly sensitive to the hyperparameter � [20, 27, 28]. Researchers have 
theoretically demonstrated that the ratio of � to sample size is crucial in determining the penalty for adding arcs in BN 
structure learning. Specifically, as � increases, the number of arcs in the network tends to increase monotonically, while 
a decrease in � leads to a reduction in the number of arcs [29]. This suggests that � significantly dictates the quantity of 
data points required to effectively influence the posterior distribution of parameters. Additionally, it has been identified 
that the skewness (non-uniformity) of the sample distribution is associated with the optimal � values, the more skewed 
the sample distribution, the smaller the optimal � values [30, 31]. It is recommended to use an � value of 1 as the smallest 
positive assignment to minimize the influence of � on parameter estimation, thereby better reflecting the data [31, 32]. 
The � value of 1 is now commonly used as default in many applications [19]. However, these studies primarily focus on 
the relationship between sample size and optimal � values and their impact on the performance of BDe in BN structure 
learning. The relationship between optimal iss � values and the number of discrete levels in each categorical variable 
remains under-explored, which is crucial for guiding the application of the BDe scoring function in real data analysis.

In this study, we focus on the following key questions: 

1. How do the AIC, BIC, and BDe scoring functions perform in general cases of BN structure learning, particularly when 
considering highly polychotomous data?

2. Given the research gap regarding the impact of the hyperparameter � (iss) on the BDe scoring function: 
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a. How does the hyperparameter � (iss) affect BDe’s performance in BN structure learning with polychotomous 
data?

b. What is the optimal � (iss) value for BDe in BN structure learning with polychotomous data?

Through this investigation, we aim to provide insights that can lead to more robust and accurate Bayesian network 
models, ultimately benefiting various fields where complex, polychotomous data is prevalent.

2  Methods

These questions were addressed using a simulation approach. The simulation work conducted is categorized into two 
primary parts: Global Simulation and Local Simulation. In Global Simulation, we evaluated the performance of four scoring 
functions—log-likelihood, BDe, AIC and BIC—by focusing on the entire network structure. In Local Simulation, we assessed 
their performance by concentrating on a single node, examining the conditions under which false negative arcs or false 
positive arcs appear in the specified network. The local simulation was based on the fact that these four scoring functions 
are all decomposable. This means that the overall score of a network can be computed as the sum of local scores for each 
node and its parents [9]. This property enables us to empirically explore their performance by focusing on a single node, 
as each node and its parent set can be evaluated independently.

2.1  Global simulation

Figure 1 shows an overview of the global simulation approach. The main steps are as follows: 

1. Generate a random graph. This random graph is also referred to as the original structure in the final step for 
comparison.

2. Sample data points from the random graph to get the simulated data.
3. Learn the Bayesian network structure, either: (a) using scoring function log-likelihood, (b) using BDe with the default 

iss value 1, (c) using AIC, or (d) using BIC.
4. Compare learned Bayesian network structures with the original structure.

In addition to learning the Bayesian network structures using four different scoring functions, we examined the impact 
of the hyperparameter iss values on the performance of the BDe scoring function by varying the iss values in Step 3 of 
the aforementioned method.

Fig. 1  Flowchart of the global 
simulation approach
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2.1.1  Random network generation and data sampling

We generated random networks and sampled data to evaluate the performance of four scoring functions. First, we 
generated a randomly connected network structure with the specified number of nodes/variables (ranging from 2 to 
8) using Ide’s and Cozman’s Generating Multi-connected DAGs (ic-dag) algorithm in the function random.graph from 
the R package bnlearn [19]. We set the maximum in-degree for any node to 3, with each node having an equal number 
of specified discrete levels, ranging from 2 to 20. Conditional probability tables (CPTs) for each node were obtained by 
generating random vectors from the Dirichlet distribution using function rdirichlet from the R package MCMpack [33]. 
The hyperparameter � of the Dirichlet distribution was set to 0.5 for nodes with parents and 5 for nodes without parents, 
providing the random parameterised BN. We then randomly sampled 1000 or 5000 data points from the parameterised 
BN to get the sampled data using the function rbn from the R package bnlearn [19]. Each variable number/discrete level/
data size was repeated 100 times.

We used the same simulation method to assess the impact of the the hyperparameter � (iss) values on the performance 
of the BDe scoring function. Instead of setting � to its default value of 1, we repeated the aforementioned method using 
� values of 100, 650, 1200, 4235, and 10,000 for the 5000 data points, nodes/variables (ranging from 2 to 8), with each 
variable having 10 discrete levels. Each combination was repeated 10 times.

To further explore the impact of iss, we focused on two specific models: a 5-node network with each node having a 
maximum of 2 parents, and a 10-node network with each node having a maximum of 4 parents. We sampled 500, 1000, 
5000, or 10,000 data points using logic sampling with the function rbn from the R package bnlearn [19, 34].

2.1.2  Bayesian network structure learning

Throughout the study, we used a score-and-search algorithm to learn BN structures from the sampled data. As shown in 
Fig. 1, we used the scoring functions log-likelihood, BDe (with the default iss value of 1), AIC and BIC alongside the tabu 
search algorithm to identify the best network structure and evaluate the performance of these four scoring functions 
[35]. In the exploration of the hyperparameter iss values in the BDe function, we varied the iss values from 0 to 1 in 
intervals of 0.1, and from 2 to 10,000 in intervals of 1, while using the tabu search algorithm in BN structure learning. For 
all scenarios, we applied the function tabu from the R package bnlearn [19].

2.1.3  Evaluation of learned network structures

To compare the learned BN structures with the original ones, we compared their skeletons using functions compare 
and skeleton from the R package bnlearn [19]. We compared skeletons rather than equivalence classes to avoid artefacts 
generated by single links generating large changes in directionality or not in an equivalence class [36]. Performance 
was measured via precision and recall (sensitivity). Precision measures ability to recover structure without mistakes (e.g., 
avoiding false positive arcs), while recall measures how much of a structure is recovered (e.g., avoiding false negative 
arcs). They are calculated as:

where True Positive is the learned BN arc present in original structure, False Positive is the learned BN arc not present in 
original structure, and False Negative is the arc in original structure not present in learned BN.

2.1.4  Evaluation of iss values in BDe

We evaluated the performance of the hyperparameter � (iss) in BDe in two ways. The first approach was to use the 
aforementioned evaluation method for � values of 1, 100, 650, 1200, 4235, and 10,000 applied to the 5000 data points 

(10)Precision =
True Positive

True Positive + False Positive

(11)Recall =
True Positive

True Positive + False Negative
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with various number of nodes/variables (ranging from 2 to 8). The second approach was to select the � value that gave 
the specified model, either the 5-node network or the 10-node network, the highest score within the assessed range of 
� values from 0.1 to 10,000. These � values were considered the optimum values.

2.2  Local simulation

Figure 2 shows an overview of the local simulation approach. The main steps are as follows: 

1. Generate paired graphs: one set as the true graph and the other as the test graph. The test graph differs from the true 
graph by the presence or absence of a single parent for the focal node, ensuring a controlled variation for comparison.

2. Sample data points from the true graph to create the simulated data.
3. Score the focal node in both the test graph and the true graph using the simulated data with one of the following 

scoring functions: (a) log-likelihood, (b) BDe with the default iss value of 1, (c) AIC, or (d) BIC.
4. Compute the score difference between the test graph and the true graph, using the data sampled from the true 

graph.

Additionally, we evaluated the impact of the hyperparameter iss values on the performance of the BDe scoring func-
tion by varying the iss values in Step 3 of the aforementioned method.

2.2.1  Generation of paired graphs and data sampling

Instead of focusing on the entire network structure, we designed paired graphs to investigate the conditions under 
which a false positive arc or a false negative arc appear. We focused on a single node in the paired graphs, where the 
only difference between the graphs is the presence or absence of a parent for that focal node. In other words, the only 
difference between the paired graphs is a single additional or missing arc. This additional or missing arc is treated as 
the false positive or false negative arc in different scenarios. For example, in Fig. 3a, we have paired two-node structures 
where the focal node is A. If we set the graph with the arc from node B to A as the true graph and the graph without the 
arc as the test graph, and if the scoring function favors the test graph, this represents the appearance of a false negative 
arc. Conversely, if we set the graph without the arc from node B to A as the true graph and the graph without the arc as 
the test graph, and if the scoring function favors the test graph, this represents the appearance of a false positive arc. We 
alternated these scenarios to simulate the appearance of false positive and false negative arcs.

To avoid potential bias from using the Dirichlet distribution in the generation of the data (as was above), we generated 
parameters for a network structure from randomised data. These parameters were then used to generate simulated 
data from the network structure. We first generated an empty data frame with a specified number of variables. For each 
variable, values were sampled with replacement from a list of letters, where the number of letters matched the number 

Fig. 2  Flowchart of the local 
simulation approach
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of discrete levels, and the specified number of data points. This data frame was then fitted to the true graph using the 
“bayes” method in the bn.fit function from the R package bnlearn [19]. Afterwards, we sampled data from the obtained 
parameters using logic sampling [34] with the rbn function from the same package. For example, in the case of Fig. 3a, we 
generated a data frame with two binary variables and a sample size of 5000. We fitted the data frame to the true graph 
with the arc from node B to A. We then sampled the same number of data points from the fitted parameters to create 
the dataset for later scoring. Subsequently, we repeated this process by fitting the same data frame to the alternative 
true graph, which lacks the arc from node B to A, and sampled the same number of data points from the new fitted 
parameters to create a new dataset.

We compared the four scoring functions using the three-node network shown in Fig. 3b to evaluate their performance 
when the iss value of the BDe scoring function was set to its default value 1. The number of discrete levels ranged from 
2 to 20, and the sample sizes were 50, 100, 500, 1000, and 5000. Each combination of discrete level and sample size was 
repeated 100 times. Additionally, we simulated all scenarios to evaluate the performance of the hyperparameter iss in 
the BDe scoring function. For this evaluation, the number of discrete levels ranged from 2 to 20, and the sample size 
was 5000. The iss values ranged from 0 to 1 in intervals of 0.1, and from 2 to 10,000 in intervals of 1. Each combination of 
discrete level and iss value was repeated 10 times.

We observed different responses of the BDe scoring function’s hyperparameter � (iss) when dealing with nodes having 
one or two parents, specifically when � was set to 1. To explore this further, we introduced variation in the number of 
parents for the focal node. As shown in Fig. 3, we designed four paired graphs to assess the impact of the hyperparameter 
� (iss) on the performance of the BDe scoring function. We focused on the same node A in all structures. Figure 3a displays 
paired two-node network structures, where A has either 0 or 1 parent. Figure 3b shows paired three-node network 
structures, where A has 1 or 2 parents. Figure 3c presents paired four-node network structures, where A has 2 or 3 parents. 
Figure 3d illustrates paired five-node network structures, where A has 3 or 4 parents.

Fig. 3  Paired test and 
true networks in the local 
simulation evaluating the 
performance of the imaginary 
sample size (iss) values in the 
BDe scoring function. a Two-
node network: the focal node, 
A, has either one parent (left) 
or no parent (right). If the test 
network is the left one (with 
an arc from B to A) and the 
true network is the right one 
(without the arc), we examine 
the appearance of false posi-
tive arcs when the score dif-
ference of node A (test minus 
true) is positive. Conversely, if 
the test network is the right 
one (without the arc) and the 
true network is the left one 
(with the arc), we examine the 
appearance of false negative 
arcs when the score difference 
is positive. b Three-node net-
work, c Four-node network, 
and d Five-node network: 
these scenarios are similarly 
extended to networks with 
three, four, and five nodes, 
respectively. In all scenarios, 
the focal node is A, which is 
shaded in grey
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2.2.2  Comparison of scores

We scored the focal node in both the test graph and the true graph, along with the sampled data, using the score function 
from the R package bnlearn [19]. We computed the score difference to indicate the presence of a false positive or false 
negative arc. By consistently subtracting the score of the focal node in the true graph from the score in the test graph, 
a positive score difference indicates the appearance of a false positive or false negative arc. This means that the test 
graph, which contains the incorrect network structure, has a higher score than the true graph, suggesting that a search 
algorithm might erroneously favor the incorrect structure. Conversely, if the score of the true graph is higher, it indicates 
no such appearance and suggests the correct network structure is more likely to be identified.

In exploring the performance of four scoring functions, we counted the frequency of positive scores among the 100 
repeats for each condition. In evaluating the performance of the hyperparameter iss in the BDe scoring function, we 
averaged the score differences across the 10 repeats and then proceeded with the analysis by extracting the � (iss) values 
where the averaged score difference was positive.

3  Results

3.1  Global simulation

3.1.1  Evaluation of scoring functions in overall network structure

Our simulation results illustrate the precision of learning BN structures using different scoring functions (AIC, BIC, 
BDe, and log-likelihood) across varying numbers of discrete levels (2 to 20) and two different sample sizes (1000 and 
5000 data points). As shown in Fig. 4, precision generally increases with the number of discrete levels for both sam-
ple sizes and quickly reaches a plateau at 1. For networks with fewer variables, this plateau is reached more quickly. 
This trend is consistently observed in AIC and BIC in both sample sizes, and in BDe for the 5000 data point sample 
size. These findings suggest that more discrete levels provide richer information, aiding in accurately identifying the 
true network structure and reducing false positives. Interestingly, the plateau in AIC is reached at a slightly higher 
number of discrete levels for the 5000 data points compared to the 1000 data points. It indicates that larger sample 
sizes may require more discrete levels to fully capture the underlying structure, potentially due to the variability and 
sensitivity of AIC to data size.

There are also differences among the four scoring functions. BIC and BDe tend to perform better overall in precision 
and often overlap, especially at lower number of discrete levels. AIC follows a similar trend but with slightly lower 
precision compared to BIC and BDe. The log-likelihood generally shows the lowest precision than the other scoring 
functions, remaining relatively constant across both sample sizes and various number of discrete levels, and it 
decreases when the number of nodes in the network increases. For certain network scenarios, particularly with 1000 
data points and a higher number of nodes, the precision for BDe drops sharply after a certain number of discrete 
levels (e.g., it drops at level 20 in 5-node networks). Notably, in the 8-node networks, precision decreases at level 15, 
increases again at level 17, and then drops sharply at level 18. This behavior could be due to overfitting, resulting 
from the incomplete CPTs because of the insufficient observations for each discrete level [37]. The BIC score generally 
maintains higher precision, which suggests it balances the fit and complexity of the model effectively across different 
discrete levels and scenarios. In most cases, especially for AIC and BIC, precision plateaus after reaching a certain 
number of discrete levels, indicating that additional discrete levels do not significantly improve or decrease the 
model’s ability to identify true dependencies beyond a certain point.

Figure 5 compares the recall of learning Bayesian network structures using different scoring functions (AIC, BIC, 
BDe, and log-likelihood) across varying numbers of discrete levels (2 to 20) and two different sample sizes (1000 
and 5000 data points). The log-likelihood score shows a higher recall (at 1.0) than the other scoring functions and 
remains relatively constant across both sample sizes and various number of discrete levels. This suggests that there 
is overfitting. It learns complete networks and captures no false negatives. For the other three scoring functions, 
recall generally decreases as the number of discrete levels increases for both sample sizes. This trend suggests that 
more discrete levels might introduce additional complexity or noise, making it harder to capture true dependencies. 
When there are 1000 data points, recall starts higher but decreases as the number of discrete levels increases, with 
more noticeable variability, especially for the AIC and BIC scoring functions. With 5000 data points, recall is initially 
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higher but decreases steadily across discrete levels. Although more data points result in more consistent behavior, 
recall still decreases as discrete levels increase.

The comparison of the other three scoring functions (AIC, BIC, and BDe) shows distinct differences in their 
performance, particularly in how they handle varying numbers of discrete levels and sample sizes in learning Bayesian 
network structures. The AIC scoring function tends to perform better, showing higher recall values than BIC and BDe, 
but its performance decreases with more discrete levels. BIC and BDe show a similar trend but with slightly lower 
recall compared to AIC. For certain network scenarios with nodes above 5, particularly with 1000 data points, the 
recall for BDe increases sharply after a certain number of discrete levels (around level 18). This suggests that a more 
detailed representation of the variables in the Bayesian network allows the model to capture true dependencies more 

Fig. 4  Comparison of preci-
sion of four scoring functions 
(AIC, BDe, BIC, and log-likeli-
hood) in the global simulation 
across different data sizes, 
number of discrete levels and 
variables. The imaginary sam-
ple size (iss) of BDe is 1. The 
x-axis represents the number 
of discrete levels, while the 
y-axis shows the precision. 
Each column panel corre-
sponds to a different data size 
(1000 and 5000), and each 
row panel corresponds to a 
different number of variables 
(ranging from 2 to 8). Error 
bars indicate the standard 
error of precision across 100 
repeats
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effectively, improving recall by identifying true positives and reducing false negatives. However, it also suggests the 
importance of prior information, such as the iss value, for balancing model complexity with the risk of overfitting, 
especially with smaller datasets. In both sample sizes, recall decreases significantly for BIC and BDe after a certain 
number of discrete levels (around level 3 in 1000 data points and level 5 in 5000 data points), indicating difficulty in 
maintaining true positive rates with increasing complexity. In most cases, recall plateaus or stabilizes at a low level 
after reaching a high number of discrete levels (e.g., level 12 when the node count is 8 in 5000 data points), indicating 
that additional discrete levels with granular information do not significantly improve the model’s ability to identify 
true dependencies and may even hinder it.

Fig. 5  Comparison of recall 
of four scoring functions (AIC, 
BDe, BIC, and log-likelihood) 
in the global simulation across 
different data sizes, number of 
discrete levels and variables. 
The imaginary sample size 
(iss) of BDe is 1. The x-axis 
represents the number of 
discrete levels, while the y-axis 
shows the recall. Each column 
panel corresponds to a differ-
ent data size (1000 and 5000), 
and each row panel corre-
sponds to a different number 
of variables (ranging from 2 
to 8). Error bars indicate the 
standard error of recall across 
100 repeats. The BDe score is 
represented by blue lines, AIC 
by orange, BIC by green, and 
log-likelihood by pink
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The trend of increasing precision with more discrete levels and larger sample sizes underscores the importance 
of detailed data and sufficient sample size for accurate network learning. BIC and BDe generally perform better in 
maintaining higher precision with larger sample sizes (5000 data points), indicating their effectiveness in balancing model 
fit and complexity. Conversely, recall decreases with more discrete levels, highlighting the challenge of capturing true 
dependencies in complex models. AIC maintains higher recall than others, but its performance diminishes as complexity 
increases. The log-likelihood score consistently shows high recall and low precision, suggesting overfitting and a tendency 
to learn complete networks. These patterns indicate a trade-off between recall and precision, necessitating careful 
consideration of each scoring function’s strengths and weaknesses in real data applications.

3.1.2  Impact of iss on BDe in the overall network structure

Figure 6 illustrates the optimal iss values in BDe across different numbers of discrete levels and various sample sizes, 
highlighting how these optimal values change with increasing complexity and data size. The optimal iss value generally 
increases with the number of discrete levels, a trend more pronounced with larger sample sizes. For the same number of 
discrete levels, the optimal iss values are lower for 500 data points, increasing progressively with 1000, 5000, and 10,000 
data points. The complexity of the network structure also impacts the optimum iss values. Figure 6A, which displays 
the 5-node network with a range up to 1000, highlights more gradual changes in iss values. Figure 6B, which shows the 
10-node network with a range up to 10,000, captures broader trends and shows more substantial increases in iss values 
for higher numbers of discrete levels and larger sample sizes.

It displays how the optimal iss values for the BDe scoring function vary with the number of discrete levels, sample 
sizes, and network complexity. Larger sample sizes, more discrete levels, and more complex networks generally require 
higher iss values, indicating that more detailed data and larger, complex datasets influence the optimal setting of the 
iss hyperparameter in the BDe scoring function for effective network learning. This insight underscores the necessity of 

Fig. 6  Optimum imaginary 
sample size (iss) values 
required in BDe scoring func-
tion to find the true network 
structure. Panel A shows 
the simulation based on the 
5-node network with each 
node having a maximum of 
2 parents. Panel B is based 
on the 10-node network with 
each node having a maximum 
of 4 parents. The x-axis of both 
panels show the number of 
discrete levels in the simu-
lated data set
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selecting optimum iss values in BDe scoring function to balance model fit and complexity in Bayesian network structure 
learning.

We further evaluated the performance of the BDe scoring function with various iss values in recovering entire network 
structures, specifically focusing on how precision and recall vary with the number of variables when each variable has 
a fixed 10 discrete levels. As shown in Fig. 7, Fig. 7A indicates that precision generally fluctuates as the number of vari-
ables increases, with higher iss values maintaining lower precision for larger number variables (above 6 variables). The 
values iss value of 1 shows the highest precision, maintaining values close to 1.0 across all numbers of variables. Figure 7B 
shows that recall generally decreases as the number of variables increases, with lower iss values maintaining lower recall. 
However, an iss of 4235, identified as the optimal iss values in Fig. 6 for the 10-node network with level 10, shows the 
highest recall, maintaining values close to 1.0 even as the number of variables increases. These results demonstrate a 
trade-off between precision and recall. For instance, the precision of iss 650 is generally lower than iss 100 and iss 1, but 
its recall is higher. Additionally, although iss 4235 maintains the highest recall at larger numbers of variables (above 5), 
its precision is between iss 10,000 and 1200. This indicates that appropriately selecting iss values is crucial for effective 
network structure learning, especially in more complex scenarios.

3.2  Local simulation

3.2.1  Evaluation of scoring functions on focal node

We explored the patterns of these four scoring functions by counting the frequency of the positive score differences 
among 100 repeats in different scenarios. As shown in Fig. 8, the count of false positives for the log-likelihood function 
is always 100 across all discrete levels and sample sizes, while its count of false negatives is always 0. This indicates 
a strong overfitting problem with the log-likelihood function. Conversely, BIC consistently shows a very low count 
of false positives, starting higher initially with smaller sample sizes (50 or 100) and then decreasing to 0, remaining 
consistent as sample sizes grow. Its count of false negatives tends to start lower initially with smaller sample sizes (50 
or 100) and then increases to 100, remaining consistent. This tendency diminishes as the sample sizes grows, with 
the count number starting higher at initial discrete levels.

The counts for BDe and AIC fluctuate more with the increase of discrete levels and sample sizes. In BDe, the count 
of false positives varies but generally increases with more discrete levels at small sample sizes (50 and 100 data 

Fig. 7  Performance of the 
BDe scoring function with 
various imaginary sample 
size (iss) values in Bayesian 
network structural learning. 
Precision (A) and recall (B) are 
plotted against the number 
of variables in the simulated 
data. The x-axis represent the 
number of variables. Error 
bars indicate the standard 
error of precision and recall 
across 10 repeats (100 repeats 
for iss value 1). The simulated 
data set consists of 5000 data 
points with each variable 
having 10 discrete levels. Dif-
ferent lines correspond to dif-
ferent iss values (1, 100, 650, 
1200, 4235, and 10,000)
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points), remaining low (around 0) at higher sample sizes. Its count of false negatives starts high at initial discrete 
levels but then drops sharply to 0, with the dropping point increasing as sample sizes grow (e.g., level 6 with 50 data 
points, level 7 with 100 data points, level 11 with 500 data points, level 16 with 1000 data points, and staying around 
100 at 5000 data points). AIC shows a more consistent pattern of false positives, starting high initially and dropping 
sharply to about 0 around level 4. Its count of false negatives starts at a middle level, drops sharply at level 3, and 
then increases to a higher point, with the increasing point shifting higher as sample sizes grow (e.g., level 4 with 50 
data points, level 5 with 100 data points, level 7 with 500 data points, level 10 with 1000 data points, and level 16 
with 5000 data points).

These patterns indicate that the presence of false positives and false negatives is closely associated with discrete 
discrete levels and sample sizes for scoring functions AIC, BIC, and BDe. The log-likelihood function has a strong 
tendency to overfit, making it unsuitable for real data applications. BIC performs well in avoiding false positives even 
with limited sample sizes but tends to miss arcs in the learned network structures, leading to false negatives. In AIC, 
there is a trade-off between false positives and false negatives for certain ranges of discrete levels, which diminishes 
with larger sample size. With enough data points, AIC can avoid both false positives and false negatives across a 
broader range of discrete levels. Similarly, BDe shows a trade-off between false positives and false negatives in low 
sample size scenarios, which diminishes with larger sample sizes. BDe performs well with enough data points and 
more granular information (i.e., more discrete levels). This suggests that the performance of BDe with the default 
iss value of 1 is sensitive to the number of discrete levels and sample sizes. This indicates the need to find better 
alternative iss values, particularly when dealing with data with low number of discrete levels and high sample sizes.

3.2.2  Impact of iss in BDe on the focal node

We analyzed how the iss values (from 0.1 to 10,000) are associated with the presence of false negative and false positive 
arcs across various discrete levels (from 2 to 20) and four network structures, as shown in Fig. 3. The score differences of 
each condition were averaged across 10 repeats, and the iss values were selected when their corresponding averaged 
score differences were positive. As displayed in Fig. 9, the presence of false positives or false negatives is influenced by 
different ranges of iss values. Interestingly, all tested iss values in the two-node and three-node networks do not lead to 
false positives across all discrete levels. However, certain ranges of tested iss values in all network scenarios cause false 

Fig. 8  The counts of posi-
tive score differences of four 
scoring functions (AIC, BDe, 
BIC, and log-likelihood) for the 
focal node in the three-node 
network scenario across 100 
repeats. The imaginary sample 
size (iss) of BDe is set to its 
default value 1. The counts 
of positive score differences, 
indicating the frequency of 
false positives (A) and false 
negatives (B) among the 100 
repeats, are plotted against 
the number of discrete levels 
(ranging from 2 to 20) for 
different sample sizes (50, 
100, 500, 1000, and 5000). The 
y-axis represents the count of 
the positive score differences 
(Test Network—True Net-
work), indicating the presence 
of a false positive arc (A) or a 
false negative arc (B)
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negatives. For instance, the range of iss values from 0.1 to 1337 leads to false negatives at level 3 in the five-node network 
scenario. Conversely, the entire range of tested iss values (0.1 to 10,000) does not cause false positives at any tested level 
(2 to 20) in the two-node and three-node network scenarios. This indicates that, in general, the presence of false negative 
arcs is more sensitive to iss values. However, we found that all tested iss values allow certain ranges of discrete levels to 
avoid false negatives, and this range tends to decrease as the complexity of the network structures increases. In other 
words, while all discrete levels need to be cautious with chosen iss values to avoid false negatives in the two-node and 
three-node network scenarios, discrete levels from 11 to 20 with any tested iss value can avoid false negatives in the 
four-node network scenario, and discrete levels 6 to 20 in the four-node network scenario.

The association pattern between the range of iss values and the number of discrete levels in the presence of false 
negatives is not very straightforward. In the two-node network scenario, the range of iss values fluctuates as the number 
of discrete levels increase. In the three-node network scenario, the range generally decreases as the number of discrete 
levels increases. In the four-node and five-node network scenarios, the range decreases from its highest point as the 
number of discrete levels increases. For instance, in the four-node scenario, the maximum iss value decreases from 
1256 at level 5 until 0 at level 11. However, the pattern is more apparent in the presence of false positives. There are no 
false positives in the two-node and three-node scenarios. The range of iss values causing false positives expands as the 
number of discrete levels increases in the four-node and five-node network scenarios, while it remains minimal in the 
four-node scenario. The appearance of false positives in more complex networks could potentially be due to the lack of 
observations for completing the CPTs when there are also high number of discrete levels [37]. These simulation results 
indicate that real data with varying number of variables, discrete levels, and complexities require different iss values to 
optimize the performance of the BDe scoring function.

Fig. 9  Analysis of the imagi-
nary sample size (iss) values 
in the BDe scoring function 
was performed when false 
negative and false positive 
arcs appear in four scenarios 
across various discrete levels. 
The sample size of the 
simulated data is 5000. The 
x-axis represent the number 
of discrete levels ranging from 
2 to 20. Panel A and B display 
the range of iss values for false 
negative and false positive 
arcs, respectively, with a vary-
ing number of discrete levels. 
The scenarios are categorized 
by the network structure: 
two-node (green), three-node 
(orange), four-node (purple), 
and five-node (teal). Each sim-
ulation was repeated 10 times. 
The iss values were selected 
when their corresponding 
averaged score differences 
of the focal node (test—true) 
across the 10 repeats were 
positive
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4  Discussion

4.1  Performance of scoring functions and their implications

This study systematically evaluated the performance of four scoring functions—AIC, BIC, BDe, and log-likelihood—
in BN structure learning, with a particular focus on polychotomous data. The results from both Global and Local 
Simulations provide several key insights into the effectiveness of these scoring functions under various conditions. 
Firstly, BIC and BDe (with default iss value of 1) generally offer higher precision (fewer false positives) than AIC 
and log-likelihood, especially with larger sample sizes and fewer discrete levels. BIC’s higher penalty for model 
complexity, due to its ln(N) term, makes it more conservative and effective in avoiding overfitting comparing to 
AIC, particularly as the sample size increases. This finding is consistent with previous studies that indicate BIC’s 
preference for simpler models with sufficient data [14, 20]. On the other hand, AIC generally offers higher recall 
(fewer false negatives) than BIC and BDe (with default iss value of 1), especially with larger sample sizes and higher 
discrete levels. However, AIC’s performance can be erratic, depending on the dataset and conditions, balancing 
model fit and complexity but sometimes behaving unpredictably, as noted in prior research [13, 20]. Our findings 
echo another study showing smaller Hamming distance for AIC only for a highly polychotomous network (up to 21 
levels), whereas BIC or BDe performed better on other networks with ≤ 11 discrete levels [25]. The log-likelihood 
scoring function, due to its lack of a complexity penalty, tends to overfit, showing high recall but low precision by 
favoring more complex networks that capture more data points but also introduce noise [9].

The performance of BDe is highly sensitive to the hyperparameter � (iss). Our results indicate that BDe with the 
default iss value of 1 performs inconsistently, with both precision and recall increasing as the number of discrete 
levels rises in low sample sizes. This suggests that optimizing iss is crucial for balancing model complexity and fit 
to achieve optimal performance. Larger sample sizes and higher discrete levels require larger optimal iss values, 
whereas smaller sample sizes and fewer discrete levels necessitate smaller iss values. Networks with more parents 
per node also demand larger optimal iss values. These findings align with theoretical foundations that highlight the 
influence of iss on network complexity [29]. Furthermore, the optimal iss value varies depending on the skewness 
of the sample distribution, with more skewed distributions favoring smaller iss values [30, 31].

There is no straightforward analytical solution to determine the relationship between false positive or false 
negative arcs and optimal optimal iss values in the BDe scoring function equation. Although many studies have 
attempted to understand the impact of iss on BDe’s performance in recovering true network structures, the 
complexity remains [29–31, 31, 32]. Consequently, we propose here a simulation method to identify the optimal 
iss for the BDe scoring function when dealing with real-word polychotomous data analysis. The steps are as follows: 

1. Generate a random network structure with the same number of nodes/variables as the real-world data set.
2. Parameterize the network with discrete levels identical to those in the real-world data set.
3. Sample data from the parameters with the same sample size as the real-world data set.
4. Score the network structure along with the sampled data using varying iss values in the BDe scoring function.
5. Identify the iss value that gives the network structure the highest score.

These findings suggests that scoring functions must be used cautiously in real-world data analysis, considering 
the study’s purpose. For instance, in causal inference, it is crucial to avoid false positives to prevent biased causal 
relationships, making AIC unsuitable for such studies. Although BIC has high precision, its low recall in handling 
high discrete levels indicates a significant trade-off, making it more suitable for situations where a small number 
of accurate inferences are desired, such as when leading to expensive biological intervention experiments.

4.2  Contribution of methodology and study limitations

Our study used randomly generated or specifically designed networks for data sampling; however, the simulated 
data generated may not share the same properties as real-world data. Simulated data allows for controlled testing 
and ensures a wide range of scenarios, but it lacks the inherent complexity and noise found in real-world datasets. 
Real-world data includes unique patterns, dependencies, measurement errors, missing values, and non-stationarity, 
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which can significantly impact the performance of BN algorithms. In contrast, simulated data is generated under 
idealized conditions that do not account for these imperfections.

In our simulations, we assigned the parameters to the network structures or fitted the network structures to 
the simulated datasets. The complexities of real-world datasets are often challenging to replicate in simulations, 
potentially leading to an overestimation of the effectiveness of scoring functions when applied to practical 
scenarios. The diversity of real-world data, which spans various sample sizes, distributions, and intricate interactions, 
contrasts with the controlled nature of simulated data typically generated to follow specific distributions and 
constraints. Future research should incorporate more realistic datasets in simulations (e.g., simulate noise) and 
address the unique challenges posed by real-world data. By doing so, researchers can better understand how 
Bayesian network algorithms perform in practical applications, leading to more robust and generalizable findings.

Here, we have not incorporated real-world data scenarios due to the extensive variety and different priorities (e.g., 
precision vs recall) required for each type of real-world data, which would necessitate several detailed examples 
and are beyond the scope of this study. Additionally, starting with simulations is essential to establish a baseline 
understanding of the scoring functions’ performance, upon which the complexities and variations of real-world 
data can later be added.

4.3  Insights and future directions

4.3.1  Potential analytical solutions to optimizing ̨  in BDe

These findings raise a crucial question in the field of BN structure learning: how to determine the optimum hyperparameter 
for the BDe score. While we propose a simulation-based methodology for identifying this hyperparameter in real-world 
data analysis, this approach is not a principled solution. A potential avenue for finding a principled solution involves 
deriving an analytical method for determining the optimum hyperparameter.

Understanding the relationship between the hyperparameter � (iss) and the maximum value of the BDe score under 
conditions constrained by the properties of real-world datasets (e.g., maximum number of states in the categorical 
variables) would be of interest. However, there is no straightforward analytical solution to obtain such relationships 
from the equation of the BDe scoring function. Neural networks might offer a way to uncover this relationship, but 
they come with significant limitations. Firstly, neural networks require thousands of data points for training, which is 
impractical to obtain from empirical simulations. Secondly, neural networks operate as a black box, meaning that even if 
they could model the relationship, the exact nature of the relationship between � and the maximum value of BDe would 
remain unclear. Therefore, further research is necessary to explore these relationships comprehensively and to develop 
a principled analytical method for optimizing � in the BDe score.

4.3.2  Dirichlet prior in BDe

The Dirichlet prior represents prior beliefs about the probability distributions of variables, specifying prior knowledge 
about the CPTs of the network. However, its impacts on the performance of the BDe score in BN structure learning is 
not immediately intuitive. The Dirichlet distribution itself is a distribution over probability distributions, which adds 
complexity to the analysis by emphasizing the nuanced interplay between prior information and observed data.

Jeffreys’ prior, introduced by Harold Jeffreys, is an invariant objective or noninformative prior designed to impart 
minimal information, maintaining objectivity under monotone transformations [38]. Jeffreys’ prior can serve as an 
alternative to the Dirichlet prior in situations where a noninformative prior is required. It is extensively studied because 
of its invariance properties and its capacity to provide an objective prior that does not favor any specific outcome. Clarke 
and Barron elucidated these properties, demonstrating Jeffreys’ prior’s capability to enhance model performance under 
certain conditions [39]. Suzuki further examined the asymptotic properties of the BDe score when using Jeffreys’ prior, 
showcasing its practical applications in BN structure learning [40]. Additionally, Natori et al. highlighted Jeffreys’ prior’s 
effectiveness in improving the Conditional Independence (CI) test, particularly when integrated with algorithms like RAI 
[41]. These studies collectively underscore the critical role of Jeffreys’ prior in refining BN structure learning, emphasizing 
both its theoretical importance and practical effectiveness in diverse applications.

Interestingly, while Jeffreys’ prior is considered less effective than the BDe score in a score-based approach, it is 
optimal in the context of Bayes factors in the constraint-based approach [41]. This raises pertinent questions about 
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its potential application in identifying the optimum hyperparameter � for the BDe score. Jeffreys’ prior is constructed 
using the square root of Fisher Information, which measures the amount of information that an observable variable 
carries about an unknown parameter. This relationship ensures that Jeffreys’ prior is invariant under reparameterization, 
meaning it does not introduce bias due to the choice of parameterization [38]. Leveraging this property, Jeffreys’ prior 
could potentially provide a principled way to calibrate � in the BDe score, offering insights into optimizing BN structure 
learning by balancing accuracy and uncertainty quantification. This presents an interesting direction for future research.

4.3.3  Hidden assumptions in simulation studies

In BN structure learning, traditional methods score different structures for a given fixed dataset and use heuristic methods 
to find the best-fitted structure with the highest score. The underlying assumption is that the given data is fully observed 
and generated independently and identically distributed (iid) from a certain underlying distribution. The objective is 
to find a network structure that captures the set of independencies in the data, approximating that true underlying 
distribution. However, in this simulation work, instead of assuming a true underlying distribution defined by the observed 
data, we assume there is a true joint probability distribution represented by BNs of the same equivalent class sharing 
the same set of dependencies/independencies. The objective becomes to find the BNs given the data (with varying sizes 
and number of discrete levels) that are induced by this joint probability distribution. This assumption is reasonable for 
real-world data analysis. For instance, if social survey data includes two independent variables, such as site and gender, 
their independence should be identifiable in the resulting network structure, regardless of the number of discrete levels 
and sample size of the collected data. However, the nuances between these two assumptions are often overlooked in 
simulations, yet they can potentially impact the results. More research is needed to explore this aspect to enhance the 
robustness and applicability of BN structure learning methods.

4.3.4  Additional directions for future research

Despite the insights gained, several aspects remain unexplored. The effect of the number of discrete levels on the 
penalty term in other scoring metrics is still unclear. Determining the optimal scoring function for scenarios involving 
a high number of discrete levels but sufficient data is crucial. This “sufficiency” likely depends on the number of parents 
for individual nodes and the number of discrete levels, factoring in network complexity and the study’s purpose. 
Furthermore, the relationship between score changes and the addition or deletion of arcs in BDe requires a more intuitive 
interpretation. Future research should address these areas by developing new theoretical frameworks or conducting 
empirical studies to deepen our understanding. By filling these gaps, we can improve the accuracy and applicability of 
BN structure learning in diverse and complex real-world scenarios.

5  Conclusion

Our study evaluated the performance of four scoring functions—AIC, BIC, BDe, and log-likelihood in Bayesian network 
structure learning using global and local simulations. We found that BIC and BDe (with default iss value 1) generally 
offered higher precision, particularly with larger sample sizes, while log-likelihood tended to overfit, showing high recall 
but low precision. The optimization of the iss parameter in BDe was essential for balancing model complexity and fit. 
Local simulations indicated that BIC minimized false positives effectively, and AIC and BDe required careful tuning based 
on discrete levels and sample sizes. We provide a detailed comparison of scoring functions and a proposed method for 
optimizing iss values, enhancing Bayesian network performance in real-world applications. These findings offer practical 
guidance for selecting scoring functions in BN structure learning: for scenarios such as causal analysis where prioritizing 
precision and minimizing false positives are crucial, BDe is recommended, and optimizing the iss parameter in BDe can 
be particularly beneficial. For a balanced approach between precision and recall, AIC is recommended. Ultimately, the 
choice of scoring function should align with the specific goals and constraints of the application, whether it is precision, 
recall, or a balance of both. This work highlights the importance of selecting appropriate scoring functions and adjusting 
their parameters in Bayesian network analysis, providing valuable guidelines for more precise and effective modeling 
of complex systems.
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