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Abstract 

Background: Relationships among genetic or epigenetic features can be explored 
by learning probabilistic networks and unravelling the dependencies among a set 
of given genetic/epigenetic features. Bayesian networks (BNs) consist of nodes that 
represent the variables and arcs that represent the probabilistic relationships between 
the variables. However, practical guidance on how to make choices among the wide 
array of possibilities in Bayesian network analysis is limited. Our study aimed to apply 
a BN approach, while clearly laying out our analysis choices as an example for future 
researchers, in order to provide further insights into the relationships among epige‑
netic features and a stressful condition in chickens (Gallus gallus).

Results: Chickens raised under control conditions (n = 22) and chickens exposed to a 
social isolation protocol (n = 24) were used to identify differentially methylated regions 
(DMRs). A total of 60 DMRs were selected by a threshold, after bioinformatic pre‑
processing and analysis. The treatment was included as a binary variable (control = 0; 
stress = 1). Thereafter, a BN approach was applied: initially, a pre‑filtering test was used 
for identifying pairs of features that must not be included in the process of learning the 
structure of the network; then, the average probability values for each arc of being part 
of the network were calculated; and finally, the arcs that were part of the consensus 
network were selected. The structure of the BN consisted of 47 out of 61 features (60 
DMRs and the stressful condition), displaying 43 functional relationships. The stress 
condition was connected to two DMRs, one of them playing a role in tight and adhe‑
sive intracellular junctions in organs such as ovary, intestine, and brain.

Conclusions: We clearly explain our steps in making each analysis choice, from 
discrete BN models to final generation of a consensus network from multiple model 
averaging searches. The epigenetic BN unravelled functional relationships among the 
DMRs, as well as epigenetic features in close association with the stressful condition 
the chickens were exposed to. The DMRs interacting with the stress condition could be 
further explored in future studies as possible biomarkers of stress in poultry species.
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Background
Understanding biological systems, from molecular and cellular interactions to ecolog-
ical relationships between species and the environment, can be a very difficult, com-
plex and challenging task [1–5]. Computational biology combines computer science 
techniques applied in a wide range of biological fields with the aim of discovering or 
unravelling hidden information in biological systems [1, 6]. In the particular field of 
genetics and epigenetics, improvements in technology and the development of meth-
odological tools now enable hundreds of thousands of genetic/epigenetic markers per 
individual together with the identification of genetic or epigenetic features of interest 
[1, 6]. The relationships among these genetic or epigenetic features can be explored 
by building probabilistic networks. This allows the inclusion of particular conditions 
(e.g. sex, domesticated phenotypes or a treatment) into the model [7–9]. Bayesian 
networks (BNs) are a type of probabilistic network that have been applied to many 
biological systems such as ecology, proteomics, and genomics, in order to model the 
dependencies among a set of given features [3, 4, 8, 10–12].

BNs are graphical models that represent joint probability distributions of a given 
set of variables [13]. They are directed acyclic graphs (DAGs), consisting of a set of 
nodes, which represent the variables, and a set of arcs or edges, representing the rela-
tionships among nodes [7, 13, 14]. BNs are based on probability theory; therefore, 
considering a given set of variables and a DAG, the following formula can be used to 
describe the network [12]:

where each Xi represents one of the variables, and  Pai is the parents of Xi (nodes with 
outgoing arcs to the variable Xi ) [7, 13, 14]. The probability of a certain variable Xi is 
dependent on the values of its parents ( Pai) [7, 13, 14]. Focusing on a particular varia-
ble, parents are defined as those nodes whose arcs are incoming to the variable, children 
are defined as those nodes whose arcs are outgoing from the variable, and spouses are 
defined as those nodes that share a common child (or children) with the variable. The 
set of parents, children, and spouses is one of the main properties of BNs, known as the 
Markov Blanket. This property makes the node of interest completely independent from 
the rest of the variables that do not belong to the Markov Blanket [15].

The structure of BNs can be learned through application of BN algorithms to meas-
ured data: this is a form of unsupervised learning, revealing patterns in the data. This 
can be helpful in genetics and epigenetics to discover potential pathways and highly con-
nected nodes as features of interest [8, 16]. Additionally, the Markov Blanket property 
of a particular condition, stress in this study, could be useful for identifying potential 
biomarkers or target genes associated with the condition [17, 18]. While there has been 
much use of BNs to study relationships among genetic variables, there is much varia-
tion in software applied, heuristic search choices, scoring metrics, and construction of a 
‘solution’, among others [19–25], and little guidance about how to navigate this array of 
options given features of a particular dataset. Many analyses either say what was done 
without providing reasoning behind choices and/or replicate methods of previous work.

Pr (X1,X2, . . . ,Xn) =

p

i=1

Pr(Xi|Pai)
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The aim of our study was two-fold: first, to apply a BN structure learning approach in 
order to provide further insights into the relationships between epigenetics and induced 
stress in a poultry animal model, the chicken (Gallus gallus); and second, to clearly lay 
out our decision-making process in order to provide a roadmap to enable others to make 
principled choices when undertaking BN analysis. The implementation of our approach 
will bring further light into the stress phenomenon in poultry science by discovering 
potential hallmark epigenetic features related to a stress condition together with the 
possibility to hypothesise and to design future studies based on the findings. Addition-
ally, laying out the steps taken as well as the decisions made as a novel analytical path-
way will allow other researchers to implement our approach in their own datasets, to 
unravel informative interactions and relationships between genetic and/or non-genetic 
variables. The focus of these aims is to create novel approaches for hypothesis building 
considering genomic (particularly epigenomic) data.

Results
Bayesian network decisions

Figure 1 provides an overview of the Bayesian network decisions made alongside corre-
sponding analysis steps.

A first major choice in BN analysis is whether to use discrete versus continuous mod-
els: this refers to the form of the analysed data, whether they are provided as continuous 
values or discrete states, which can be ordinal (e.g., present/absent, low/medium/high) 
or have no order (e.g., red/green, a sampling location). However, while discrete data in 
general requires use of a discrete BN model, continuous data does not: continuous meas-
ured values can be ‘discretised’ into ordinal states. When one has continuous data, a 
decision needs to be made. Continuous BNs make use of the numeric value of measured 
variables, capturing the full range of values, but are restricted to additive interactions; 
discrete BNs use discrete categories for variable values, potentially losing information, 
but allow for combinatoric interactions (e.g., requiring both parents to be present) [13]. 
Our data (see “Methods” Section) consisted of 60 differentially methylated regions 
(DMRs) identified when comparing methylomic profiles in red blood cells between two 
experimental conditions, controls (22) vs stress (24) in 46 male White Leghorn chick-
ens (Gallus gallus): these represent the features in our dataset. The experimental condi-
tion was a discrete variable. These experimentally identified DMRs allowed us to localize 
genomic regions from which reads were extracted per individual analysed. For the pur-
pose of the analyses performed here, these regions were also named as DMRs. These 
DMRs were integer values representing the number of sequenced reads for each individ-
ual, which represents the methylation level of that specific region per individual; how-
ever, the value of 0 (no methylation) was by far the most common, therefore, meaningful 
discretisation into no-methylation and methylation was a sensible choice. This discrete 
data combined with the ability of discrete BNs to represent combinatoric interactions, 
which may be expected in genetic systems [26], led us to choose discrete BN models.

There are two major branches of BN discovery: constraint-based and search-based. 
Constraint-based methods use conditional independence tests to eliminate network 
structures that are inconsistent with discovered conditional independence rela-
tionship, returning a network solution which fits these constraints. Search-based 
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algorithms perform a heuristic search through network structures, selecting struc-
tures with high scores under a specific scoring metric. Constraint-based methods can 
be sensitive to node order, returning different structures with different ordering of 
the variables of the used data file [27] and are often considered less accurate than 
score-based methods [28] (although this has been brought into question in recent 
years [29]). Search-based algorithms can produce variable answers due to random-
ness within a heuristic search, but this is not dependent on node order in the data 
file. Thus, the same dataset can be queried multiple times for capturing a range of 
solutions. Search-based methods provide a score representing the probability of a 
returned solution: this can be used in a principled way to combine multiple differ-
ent answers, weighting networks by their probability [3]. This feature is particularly 

Fig. 1 Steps taken and decisions made to build a consensus Bayesian network. The starting point was 
methylation data from 46 chickens under two treatment conditions (22 control, 24 stress). Bioinformatic 
analyses were performed as described in [54, 57]. Thereafter, a set of 60 differentially methylated regions 
(DMRs) were selected. The corresponding methylation values of each DMR were counts (ranging 0–39). 
Considering that the most frequent value was 0, binary discretization was implemented, leading us to 
explore discrete Bayesian network (BN) algorithms: we used the bnlearn package in R, exploring the search 
space with a score‑and‑search algorithm and the BDe score. Considering that the data had imbalances 
between binary states that could lead to the discovery of artefactual arcs, a contingency test (chi‑square) 
was applied to all possible pairs of variables to create a list of arcs to avoid. Test searches and the software 
BayesPiles showed that the search space was complex and building the consensus Bayesian network 
required a strategic and iterative approach: the combination of a phylogenetic model averaging, plus further 
selection of arcs common to all searches into a consensus weighted Bayesian network
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useful in a situation like ours, with low data amount and high number of variables, 
where combining results from multiple searches can provide greater confidence in an 
answer. Additionally, score-based algorithms are more commonly used and there is 
a larger variety tools available [30]. Because of their wider use, tool availability, and 
relatively easy option to develop further methodology combining multiple network 
solutions, we chose to apply search-based algorithms for our roadmap.

Given discrete BNs, there are a number of scoring metrics to choose among. We 
wished to maximise our ability to find novel connections, thus we selected the Bayesian 
Dirichlet equivalent (BDe) score [13], which has been shown to be less conservative than 
others (Bayesian Information Criterion [BIC] and Mutual Information [MI] [31]). Addi-
tionally, while our 46 datapoints are on the low side for recovering Bayesian networks 
[31], this data amount is sufficient to recover up to three parents per node using the BDe 
score [32], which generates a reasonably complex network. It has been shown for the 
BDe score that lower data amounts result in recovery of fewer arcs, but does not result 
in erroneous arcs [31]. Thus, we can remain confident in those arcs we do recover.

Another choice to make is what software to use to perform the Bayesian network anal-
ysis, with options ranging from coding it oneself [19, 20] to a variety of free and proprie-
tary platforms [21–25]. This choice can be somewhat arbitrary, as the underlying theory 
remains the same, but will be constrained by one’s analysis choices, in our case discrete 
networks using a BDe score. We elected to use the R package bnlearn [33], as free, open-
source software which had our desired functionality.

Finally, choices regarding the search process must be made. In order to make informed 
decisions, iterative exploration of the data and initial search results is required. First, we 
examined our discrete data, and found that there was an imbalance in discrete states for 
many of the DMRs (more no-methylation, Fig. 2). Because such imbalanced states can 
create artefactual connections by overrepresented states appearing to be good predictors 
of each other, regardless of the presence of the rarer states [3], we applied the method 
of contingency test filtering from Milns et al. [3]: we applied pair-wise chi-square tests, 
identifying those pairs of variables with chi-square p-values equal to or greater than 0.25 
as showing no potential dependence. These were provided to the BN as a list of arcs that 
must not be considered in the process of building the network [3]. In total, contingency 
test filtering identified a total of 960 arcs (of the 3,660 possible arcs) to avoid.

We preformed initial heuristic searches using the bnlearn R package, finding a large 
variety in network structure, suggesting that extensive search and model averaging 
would be the best approach. We confirmed this with analysis via BayesPiles [34], which 
showed highly variable top networks across different searches (Fig. 3). Networks similar 
in score varied strongly in structure. This variation indicates that the top networks found 
are in different areas of the search space, and not simply fine variations of one general 
area. Thus, we elected to apply the modelling averaging approach from Milns et al. [3], 
which has been shown to produce similar sets of highly probability arcs from different 
collections of top networks [3]: we performed 100 greedy hill climbs (see “Methods” 
Section) from 100 random starting networks, and applied the Milns model averaging 
approach to identify highly probable arcs [3]. As there was still some variation even in 
these highly probable arcs, we repeated this process 50 times, selected those arcs com-
mon to all searches, and took the average probability of the common highly probable 
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arcs across all repetitions, to produce a final consensus network. Repetition of this anal-
ysis showed repeatable results, identifying the same top relationships between DMRs 
and the same Markov Blanket of the stress condition, thus we determined this was suf-
ficient exploration of the search space.

Discovered Bayesian network structure

A total of 43 arcs were common to all 50 searches. These arcs and their average prob-
ability values of being part of the top 100 networks are shown in Additional file 1, and 
the consensus network built with these arcs is shown in Fig. 4. The consensus network 

Fig. 2 Distribution of four of the differentially methylated regions (DMRs) once a binary discretization 
method was applied. The state 0 represents values with absence of methylation, the state 1 represents values 
with presence of methylation. These four DMRs (A–D) are representative of imbalances between the two 
states, as zero was the most popular state among different DMRs
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included 47 out of the 61 features (60 DMRs plus experimental condition). Among 
these arcs, relationships between DMRs OCLN—DMR7 (distal intergenic region, see 
“Methods” Section), CANX—TPST2, and FBN1—ENS27231 (unannotated region, see 
“Methods” Section) had the highest values of probabilities of being part of the consensus 
network (0.96, 0.86 and 0.83, respectively) (Table 1).

The application of the Markov Blanket property in order to get the set of parents, chil-
dren, and spouses in close relationship with the treatment identified only two DMRs, 
OCLN and ENS51236 (unannotated region, see “Methods” Section; Table  1). The arc 
between stress and OCLN had the highest average probability value (0.81).

Discussion
Behind biological systems lies a series of complex and intricate relationships among 
features [2, 3]. The application of BNs can be a useful approach to discover, identify 
and unravel hidden patterns within the data, and gain insights into a biological area of 
knowledge [10, 16]. However, there is little practical guidance for how to make choices 
among the array of possibilities within a BN analysis. Here, we have undertaken a practi-
cal application of BNs to a particular question in poultry epigenetics, while clearly stat-
ing our analysis choices. We explained our reasoning behind using a discrete, rather than 
a continuous, BN due to the distribution of our data, how we chose the BDe score, and 
the software applied. We explained our analysis of our dataset’s discrete states and the 
choice to use chi-square contingency-test filtering to avoid artefacts from imbalanced 
discrete states. We showed our exploration of the search space structure for our ques-
tion, including using the specialised software BayesPiles [3], which revealed the space to 
be highly varied and thus to require complex model averaging techniques. We applied 

Fig. 3 BayesPiles investigation of search space. Top networks found from four separate collections of 
searches, representing peaks of many different hills in the search space. BayesPiles visualises a summary of 
network structure as a shaded stack representing out‑degree of each node (darker = higher) above a bar 
representing network score (longer = higher), with networks along the x‑axis and nodes along the y‑axis. A 
shows the highest 25 networks for four collections of searches (different colours), with highest network to 
the left. The strong variation in network structure (different patterns in the shaded bars) indicates that these 
networks are tops of different peaks in the search space, not the final climb of a single hill. B shows the final 
25 networks from all four searches combined, sorted by their score. The mixing of colours throughout shows 
the high variation in search peaks: each collection of searches explored different areas of the search space, 
finding different high‑scoring structures
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techniques developed in a similarly varied search space [3], and added further refine-
ments of combining multiple searches. We hope that our clarity surrounding our choices 
will provide a roadmap for others beginning a BN analysis.

The Markov Blanket of the stress condition together with those DMRs showing the 
highest probability values of being part of the consensus network appear related to the 
functional structure of the brain and a possible link with the immune system. Starting 
with OCLN, Occludin, this gene showed the highest probability value and it belonged 

Fig. 4 Consensus network of DMRs. Networks were built with common arcs to 50 searches, each one of 
these searches consisted of a starting point of 100 random graphs. Features representing the differentially 
methylated regions (named by related gene or region, see “Methods” Section) and the stress conditions 
are nodes; lines between nodes represent the identified relationships. Arc labels represent the average 
probability of belonging to the consensus network, the higher the values, the higher the probability. 
Different colours represent different ranges of probabilities: black: 0.90–1.00, blue: 0.80–0.89; grey: 0.70–0.79; 
orange: 0.60–0.69

Table 1 Features of interest discovered via Bayesian network

The DMR name (see “Methods” Section) as shown in the network in Fig. 4 is provided in the ‘Symbol’ column; the gene name 
(if existing) in ‘Gene’, and the remaining two columns represent how we identified this feature of interest from the network 
structure and information about gene function, respectively

Symbol Gene Identified by Gene information

OCLN Occludin Markov Blanket Intracellular tight junctions and adhesion. 
Limiting (allowing/preventing) the exchange of 
substances and/or cells

CANX Calnexin Highest probability values Role when unfolded/misfolded proteins exceed 
the capacity of chaperones. Functionality associ‑
ated with the resistance of the blood brain barrier

FBN1 Fibrillin‑1 Highest probability values Component of microfibrils which make up 
extracellular matrix protecting cells, including 
nerve cells

TPST 1 / TPST 2 Tyrosyl protein 
sulfotrans‑
ferases

Highest probability values Both proteins are in charge of the correct func‑
tioning of PSLG‑1 (P‑selectin), which promotes 
adhesive interactions with other selectins that 
might lead to inflammatory diseases

ENS51236 None Markov Blanket Function yet unknown

ENS27231 None Highest probability values Function yet unknown

DMR7 None Highest probability values Function yet unknown
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to the Markov Blanket of the stress condition. Occludin is a gene whose major func-
tionality is associated with intracellular tight junctions and adhesion, defining a selec-
tive barrier and limiting the exchange of substances and/or cells in different tissues 
such as the chicken ovary, the chicken intestinal mucosa, or the human brain [35–39]. 
In the chicken ovarian follicles, Occludin plays a role in allowing or preventing the 
exchange of yolk material, especially during the first stages of the formation of the 
follicles, considering that the expression values were increased [35, 39]. In case of the 
brain, Occludin and other genes are involved in the permeability of the blood brain 
barrier, as its integrity is crucial for the correct functioning of the central nervous sys-
tem [37, 38]. In patients suffering from a fatal heat stroke, increased expression values 
of OCLN were found, and authors suggested that it could be aimed at restoring junc-
tional complexes and the barrier function as a compensatory mechanism [38]. Con-
sidering that the stress response is initially triggered in the central nervous system, it 
is possible that OCLN is playing a key role protecting the integrity of the blood brain 
barrier to prevent any nervous disfunction, that would be crucial when dealing with 
the influence of a stressor.

The arc between CANX and TPST 2 was among the arcs with the highest probability 
values. The biological functionality of CANX, Calnexin, can be divided into two major 
categories as it is linked to the immune system as well as to the blood brain barrier [40–
43]. Chickens inoculated with Salmonella Enteritidis as an immune challenge increased 
the abundance of Calnexin in heterophils (a subpopulation of leukocytes) [40]. Together 
with other proteins, Calnexin belongs to the endoplasmic reticulum proteins and their 
functionality comes into play when the unfolded or misfolded proteins exceed the capac-
ity of chaperones or when the luminal conditions are not optimal for the correct pro-
cessing of new proteins [42]. Regarding Calnexin functionality in the brain, Jung et al. 
[43] found that this gene plays a major role in multiple sclerosis and its equivalent in 
mice, as the loss of CANX increased the resistance of the blood brain barrier, avoiding 
the infiltration of cells belonging to the immune system and the induction of inflamma-
tion markers [43]. The other DMR interacting with CANX was TPST 2, a tyrosyl protein 
sulfotransferase that, and together with TPST 1, are in charge of the correct function-
ing of P-selectin glycoprotein ligand-1 (PSGL-1) by transferring tyrosine residues [41, 
44, 45]. PSGL-1 is expressed on leukocytes and promotes binding and adhesive interac-
tion with other selectins that may lead to inflammatory disorders as a consequence of a 
potential pathological recruitment of leukocytes [46].

Among the Markov Blanket as well as the arcs with the highest weight values there 
were 3 DMRs whose function and/or annotation is still yet unknown (DMR7, ENS51236, 
and ENS27231). Our finding highlights two different advantages of implementing BNs: 
on the one hand, studies focusing only on bioinformatic analysis would generally ignore 
these DMRs or genes, because the functionality of them will not be found in sources 
such as KEGG pathways or GO terms. On the other hand, the power of BN algorithm 
discovered novel markers that might be worth exploring, for example how ENS27231 
might interact with FBN1 and relationship of the extracellular matrix with stress 
response. Learning the structure of a BN with a set of highly significant genetic features 
can be the starting point of future research. Instead of focusing on the bigger picture 
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that bioinformatic studies provide, analysis of only a reduced number of features would 
be more accurate to gain a further insight into the stress phenomenon.

The stressful condition, in this particular study, was directly connected to only one 
epigenetic feature, OCLN, while the Markov Blanket consisted of two epigenetic fea-
tures. It is then plausible to ask whether these two DMRs can be explored as biomarkers 
of stress in chickens. Even though our approach was mostly exploratory using a relatively 
small number of observations, this did not prevent implementation of BN algorithms; 
however, these small number of observations might have had an impact on the search 
space, requiring all the steps taken throughout this study. Additionally, the BDe score, 
used in our approach as the score to find the networks that best fitted the data, has pre-
viously been shown to have a better performance compared to other scores, such as the 
BIC score, when dealing with small number of observations. In this scenario, the BDe 
score is considered to be less conservative, being able to identify arcs between discrete 
variables, while the BIC score could not recover any of the arcs [24]. Considering our 
finding as the starting point, future studies can be designed with the aim of evaluating 
the expression and/or methylation patterns of only these two genetic features under two 
experimental conditions, non-stress and stress. Thereafter, knowledge can be transferred 
into other fields such as animal welfare and poultry production. For example, one of the 
main principles of animal welfare is the absence of distress in association with a com-
fortable environment [18, 47, 48]. Stress can be highlighted as one of the major problems 
faced by the poultry industry nowadays, and the knowledge discovered by BNs can be 
further used to develop breeding protocols and genetic lines [49, 50]. Even though in this 
particular study the condition was stress, it is important to mention that the condition 
could be of any other nature, such as gender, male vs female; phenotypes, ancestral vs 
domesticated chickens; or even different stages in life, juvenile vs adult [51–53]. In this 
context, the approach implemented in this study can be applied in genetics and epige-
netics as a first approximation to gain basic knowledge in regard to a particular condi-
tion, with potential implications in applied science.

Methods
Dataset

The data was accessed and downloaded from the European Nucleotide Archive (ENA, 
www. ebi. ac. uk), under the accession number PRJEB34868 [54]. The dataset consisted 
of 46 male White Leghorn chickens (Gallus gallus). The experiment involved 0–26 days 
aged chickens, 22 raised under control conditions, while the other 24 were exposed to 
a social isolation protocol. This isolation protocol was applied from the day 4 of age 
until the day 26 of age (period of 21 continuous days), as described by Pértille et al. [54]. 
Briefly, birds under the stressful condition were daily exposed to social isolation for one 
hour during the first week, two hours during the second week, and three hours during 
the third and final week. During the exposure to the isolation stress, birds were individu-
ally placed in a box with vocal but no visual or physical contact with other birds. Thus, 
during the stress treatment, birds were exposed to a combination of stressors: social iso-
lation and deprivation of food and water [54, 55]. The control animals were not exposed 
to the social isolation protocol, but they were raised under the same environmental 
conditions as the stressed birds. The identification of differentially methylated regions 

http://www.ebi.ac.uk
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(DMRs) between these experimental groups included a series of steps such as blood col-
lection at day 26 of age (2 h after the last day of isolation was ended) in order to extract 
the DNA from red blood cells, the preparation of the libraries using the GBS-MeDIP 
method [56] to sequence the DNA fragments and finally the bioinformatic pre-process-
ing and analysis to identify the DMRs [54, 57]. The DMRs identified in this study were 
selected by first defining ‘Regions of Interest’ (ROI) showing differences in sequenc-
ing coverage between the treatment and control groups. This was done with MACS2, 
which is a recommended tool to identify sample-wise ‘peak specific’ methylated regions 
of variable sizes in experiments using paired controls to determine enrichment against 
background [58–60]. Then, we applied the weighted trimmed mean of M-values (TMM) 
method within edgeR on these ROI obtained with MACS2. TMM is used to calcu-
late scale factors between libraries. One of the standard outputs of this edgeR test is a 
p-value (edgeR.p.value). Based on this, 60 DMRs were selected with p ≤ 0.005. DMRs 
were annotated and divided into 4 different categories based on the features of the 
genome in the region: promoter, distal intergenic, intron, or exon. DMRs categorised as 
promoters, introns and exons were annotated with the corresponding gene name. Pro-
moters, introns, and exons without a proper gene name were assigned their correspond-
ing ENSEMBL gene name using the first three letters and the numbers after the zeros 
(e.g. ENS50641 represents ENSGALG00000050641.1). DMRs annotated as DMR1 up to 
DRM7 correspond to distal intergenic regions without a proper gene name. A list of the 
60 DMRs used and their annotations is provided in Additional file 2. 

Data discretization and contingency test

The DMR dataset (46 samples and 60 variables) consisted of individual counts obtained 
within the experimentally obtained DMRs described above, corresponding to the num-
ber of segments aligned to a particular DNA region, values ranging from 0 to 39. With 
the data already pre-processed, our initial step to build the consensus BN was to fur-
ther discretize this count data with the aim of filtering noise as well as increasing the 
statistical power [31]. The most statistical power is provided by all discrete states hav-
ing roughly equivalent numbers of data points [3, 13]; here, zero counts was the most 
abundant observation, and thus the closest to this ideal was a binary dataset with two 
categories: zero and one. All original values equal to zero were assigned a new value 
of zero (no methylation), while the rest of the values were assigned a new value of one 
(methylation). In addition to the DMRs, the stressful condition was included in the 
dataset as a binary variable, considering the control condition as 0 and the stress con-
dition as 1 (22 individuals = 0, 24 individuals = 1). The DMRs plus the stressful condi-
tion are our features which are included as nodes in the network. An overabundance of 
the discrete state of zero remained. An imbalance of discrete states can lead to potential 
artefacts where high-frequency states of different variables overwhelm the BDe scoring 
matrix and appear to predict each other, irrespective the distribution of lower-frequency 
states [3]. In order to combat this artefact, contingency tests can be applied to filter out 
any pairs of variables showing no evidence of contingency with each other (e.g., an arc 
between them would be more likely to be an artefact) [3]. Thus, we applied pair-wise 
contingency-test filtering as in Milns et al. [3]: a chi-square contingency test was applied 
to all pairs of variables, using a p-value of 0.25 as the cut-off point where we considered 
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there to be no evidence of contingency. Thus all pairs of variables with a chi-square 
p-values 0.25 or above were filtered out as showing no possible dependence between 
them [3]. These were included in the Bayesian networks analysis as a list of arcs to be 
blocked, representing prior information that these arcs should be excluded from the net-
work [12, 61].

Bayesian network analysis

The R package “bnlearn” [33] was used to learn the structure of the network. Initial tests 
were done by starting groups of 100 searches from random graphs generated by the ran-
dom.graph function, using tabu search function, with the BDe score and the list of arcs 
to be blocked included [12, 61]. Summary networks of arcs found across these groups of 
searches were analysed for arc correspondence and showed high variability. Variability 
in search results was confirmed using BayesPiles [34], which requires use of the Banjo 
software [62]: equivalent settings using the BDe score and a greedy (closest available to 
tabu) search were set in Banjo, and the list of arcs to be blocked included. Four sets of 
searches including multiple starts from random networks were visualised (Fig. 3), reveal-
ing again high variability.

Thus, we decided to use a method previously applied in an ecological system with a 
similarly high variability in search results [3]. This method collects top networks from 
multiple searches (100 searches both in [3] and here), then applies a phylogenetic model 
averaging approach considering the score of the network to develop probabilities of arcs 
being in a high-scoring network. These probabilities are clustered into higher and lower 
probability clusters, and are provided uncertainty values for cluster membership. Those 
arcs in the higher probability cluster (with a probability and uncertainty cut-off) are pre-
sented as the final network. To perform this analysis, we started 100 searches from ran-
dom graphs generated by the random.graph function, using tabu search function, with 
the BDe score and the list of blocked arcs included, as above, identifying 100 top net-
works. This search process took approximately 4 min on a Mac laptop running OS 12.1. 
The arcs present in the 100 top networks, along with the network scores, were input into 
the function relationshipProb developed by Milns and collaborators [3], which provides 
an average probability for each arc. These probabilities were then input into their make-
clustersIDhigh function, which estimates the probability of each arc being part of one out 
of two categories: low probability or high probability. Each arc was assigned to either a 
low probability or high probability category in addition to a value corresponding to the 
uncertainty associated with the classification process [3]. The arcs considered as highly 
probable functional relationships were selected with probability values greater than or 
equal to 0.5 and an uncertainty value equal or lower than 0.01. This model averaging 
and identification of highly probable relationships took approximately 15 s on the same 
machine. Additional files 3 and 4 provide the R code and the data, respectively, for these 
BN analyses.

This process still resulted in more variation than desired, thus in order to build a con-
sensus network, the arcs common to 50 repetitions of the above process (starting point 
of each search, 100 random graphs, then application of the Milns et al. [3] method to 
identify highly probable functional relationships) were combined. For each arc common 
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to the 50 repetitions, an average value of the probabilities was calculated and used for 
building a weighted network. The Markov Blanket of the treatment was identified by 
applying the mb function within the “bnlearn” package.
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