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Recent advances in high-throughput molecular biology has motivated in the field of bioinformatics the use of network 
inference algorithms to predict causal models of molecular networks from correlational data.  However, it is extremely 
difficult to evaluate the effectiveness of these algorithms because we possess neither the knowledge of the correct 
biological networks nor the ability to experimentally validate the hundreds of predicted gene interactions within a 
reasonable amount of time.  Here, we apply a new approach developed by Smith, et al. (2002) that tests the ability of 
network inference algorithms to accurately and efficiently recover network structures based on gene expression data 
taken from a simulated biological pathway in which the structure is known a priori.  We simulated a genetic regulatory 
network and used the resultant sampled data to test variations in the design of a Bayesian Network inference algorithm, 
as well as variations in total quantity of available data, length of sampling interval, method of data discretization, and 
presence of interpolated data between observed data points.  We also advanced the inference algorithm by developing a 
heuristic influence score that infers the strength and sign of regulation (up or down) between genes.  In these experiments, 
we found that our inference algorithm worked best when presented with data discretized into three categories, when 
using a greedy search algorithm with random restarts, and when evaluating networks using the BDe scoring metric.  
Under these conditions, the algorithm was both accurate and efficient in recovering the simulated molecular network 
when the sampled data sets were large.  Under more biologically reasonable small amounts of sampled data, the 
algorithm worked best only when interpolated data was included, but had difficulty recovering relationships describing 
genes with more than one regulatory influence.  These results suggest that network inference algorithms and sampling 
methods must be carefully designed and tested before they can be used to recover biological genetic pathways, especially 
in the context of highly limited quantities of data. 

 
INTRODUCTION 
 
The advent of novel technologies for collecting high-throughput 
data in molecular biology has led to the concurrent development of 
bioinformatics tools for analyzing this data.  Computer scientists 
and bioinformaticians soon realized that common inference 
algorithms used in other fields can be applied to these large 
amounts biological data, such as those from microarrays, to 
statistically predict causal molecular pathways.  However, these 
potentially powerful algorithms are limited by our inability to 
evaluate their accuracy, as we do not know the true biological 
network in which to compare them with and experimenters can not 
physically perform in reasonable time the multiple gene knockouts 
or other types of interventions required to systematically test the 
predicted networks. 

As part of an ongoing project dedicated to integrating the 
songbird brain (Jarvis et al. 2002), Smith, et al. (2002) developed a 
novel approach for evaluating the accuracy and efficiency of 
network inference algorithms in a reasonable amount of time.  This 
approach requires the creation of a biologically reasonable 
simulation on a computer in which the experimenter makes and 
knows all the rules.  As the simulation runs, data is sampled from it 
as one would sample data from a real biological system.  The 
sampled data is then passed to an inference algorithm to evaluate 
the algorithm’s ability to recover the simulated system.  The 
inference algorithm can then be modified and made more robust to 
recover a network that closely matches the simulated system.  
After confident recovery of the system from limited simulated data 
is achieved, the algorithm can be applied to real data.  The 
recovered system can then be used to guide further biological 

experimentation for verifying the predicted regulatory 
relationships. 

In our first use of this approach (Jarvis et al. 2002; 
Smith et al. 2002), we incorporated multiple levels of biological 
organization, from the molecular to the behavioral.  Here, we 
attempt to look more closely at a single level of biological 
organization, the molecular level.  We developed a simulator, 
which we named GeneSimulator, that models genetic regulatory 
networks and generates correlational data similar to that 
collected from high-density gene microarrays.  We then 
evaluated various Bayesian network (BN) inference algorithm 
designs for their ability to recover the underlying genetic 
regulatory network.  We chose to use a BN algorithm, because 
compared with other common algorithms (Somogyi and 
Sniegoski 1996; D’haeseleer et al. 1999; Weaver et al. 1999), 
BN have the ability to simultaneously model non-linear 
combinatorial relationships, robustly handle noisy data sets, and 
guard against over-fitting.  BN can not handle networks with 
cyclic structures, such as regulatory feedback loops; however, 
dynamic Bayesian networks (DBN) can handle cyclic structures 
(Friedman et al. 1999; Murphy and Mian 1999).  We used DBN, 
and when so configured, they are also capable of coping with 
hidden variables that are not observed in the data, such as 
protein levels or protein interactions that affect the measured 
gene expression data.  In the DBN inference algorithm we 
developed here, we tested different scoring metrics and heuristic 
search methods, as well as different aspects of data collection 
and discretization, in order to determine the best configuration 
for recovering the simulated system.  Our analysis provides 
insight on how to more efficiently use BN inference algorithms 
for discovering genetic networks from correlational data. 
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METHODS AND LOGIC 
 
GeneSimulator 
GeneSimulator is programmed in Matlab (MathWorks, Inc.).  It 
models genetic regulatory pathways of arbitrary structure 
(topology) and produces values of gene expression levels at 
discrete time points.  Updates to values at each time step are 
governed by a simple stochastic process: 
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where Yt  is a vector representing the expression levels of all genes 
at time t , with expression levels ranging from 0 to 100 (arbitrary 
units).  A  is a matrix that represents the relationships of gene 
interactions in the underlying regulatory pathway.  For every entry 
of A , the magnitude of the entry represents the strength of the 
regulation that a regulator gene exerts upon a target gene; the sign 
indicates the type of regulation, with positive values indicating up-
regulation and negative values indicating down-regulation.  T is a 
vector of threshold regulating values for each gene: a regulatory 
gene exerts an influence on its target gene only to the extent that it 
differs from its threshold value.  In this study all gene thresholds 
have been set to half of the maximum value; i.e., every entry of 
T is exactly 50.  If the regulator gene is present at a level above its 
threshold value, then its regulatory effect on its target genes occurs 
as specified in A .  Contrarily, if the regulator gene is present at a 
level below its threshold value, then its effect is in the opposite 
direction of that specified in A  to return the gene to its basal level.  
The ε term is white noise, drawn uniformly at random from the 
interval –10 to 10.  This term is added for stochasticity and is 
meant to capture all sources of noise, especially inherent biological 
noise.  If a gene has no regulator (the corresponding entries in A  
are all zero), then it will move in a random walk, with steps taken 
according to the values of ε.  As the simulation runs, the data is 
sampled in pre-specified intervals as one would do in an actual 
biological experiment, and the samples are exported to a text file.  
For example, if we collect data every five time points, then we 
define the sampling interval to be 5, and the sampled output is the 
series of expression level vectors (Y0,Y5,Y10 ,...... ), analogous to 
data gathered in a microarray time course experiment. 
 
Data Processing and Collection Methods 
Discretization: Before being passed to our DBN inference 
algorithms, the data we collect needs to be discretized.  Discrete 
data allows us to model complex non-linear interactions between 
genes without resorting to computationally prohibitive calculations 
over continuous distributions.  In this study, we discretized the 
sampled expression levels generated by GeneSimulator from 
continuous values into various numbers of categories to determine 
if finer or coarser discretization improves recovery accuracy.  We 
also evaluated two general types of discretization strategies: hard 
and soft.  Hard discretization employs firm boundaries between 
categories, requiring a given expression level to belong to only a 
single category.  Soft discretization employs fuzzy boundaries 
between categories, allowing a given expression level to belong to 
two or more categories with different percentages each.  Other data 
processing and collection methods are described in the results. 
 
Bayesian Network Inference Algorithms 
Our DBN inference algorithms are written in C++ and are 
designed to search for high-scoring graphical models (networks) 

that describe probabilistic relationships between variables.  The 
score that is computed for a graph generated from the data 
collected and discretized is a measure of how successfully the 
graph explains the relationships in the data and also how simply 
it does so.  Graphs are penalized for over-complexity or over-
generality so there is a resultant bias towards simpler graphs.  
This guards against over-fitting the model to the data. 

Every node in the BN graph represents a single 
variable, here one gene.  Every directed edge, or lines with 
arrows, between two nodes represents a conditional statistical 
dependence of the child node on the parent node.  In the context 
of a DBN fro recovering a genetic regulatory network, each 
edge indicates a regulatory relationship in which the parent gene 
regulates the child gene at a later time. 
 
Basic Theory of BN: A static BN (Friedman et al. 2000) is an 
acyclic directed graph that encodes a joint probability 
distribution over χ, where χ= {X1,...,Xn } is a set of discrete 
random variables iX .  The BN for χ is specified as a pair 

< G,Θ> .  The variable G  represents a directed graph whose 
vertices correspond to the random variables nXX ,...,1 .  In this 

graphical representation, each variable iX  is independent of its 

non-descendants given its parents in G .  The variable Θ 
represents a set of parameters that collectively quantify the 
probability distributions associated with the variables in the 
graph. Each parameter of Θ is specified by 
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and each possible value )( iXpa  of )( iXPa . )( iXPa  denotes 
the set of parents of iX  in G  and )( iXpa  denotes a particular 
instantiation of the parents.  Thus, a BN specifies a unique joint 
probability distribution over χ given by:  
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These notions extend quite naturally to DBN, which 
we exploit here in the context of time series data (for more 
details, see Murphy and Milan 1999). 

The problem of discovering a BN from a collection of 
observed data can be stated as follows.  Given a data set 
D ={Y1,Y2,Y3,......Yn }of observed instances of χ, find the most 
probable graph G for explaining the data contained in D.  One 
common approach to this problem is to introduce a scoring 
metric that evaluates how probable each graph G explains the 
data in D.  In the presence of such a scoring metric, the problem 
of discovering a BN then reduces to the problem of searching 
for a graph that yields a high score, given the observed data in 
D.  To search the highest scoring graph, a particular search 
method needs to be used. 
 
Bayesian Scoring Metrics:  The Bayesian scoring metric can be 
generally described (Heckerman 1996) as: 

)(log)(log)|(log)|(log):( DPGPGDPDGPDGScore −+==
Which states that the score of the graph G given data in D is 
equivalent to the log of the probability of G given D.  In this 
study, we investigated two types of scoring metrics that employ 
different assumptions: the BDe (Bayesian Dirichlet equivalent) 
and the BIC (Bayesian Information Criterion) scoring metrics.  
Both scoring metrics have an inherent penalty for over-
complexity to guard against over-fitting of data.  The BDe score 
captures the full Bayesian posterior probability P(G|D).  In this 



setting, the prior over graphs needs to be specified (we use a 
uniform prior) and the prior over parameters is Dirichlet, i.e. a 
multinomial distribution describing the conditional probability of 
each variable in the network.  The BIC score instead of capturing, 
is an asymptotic approximation to the full posterior probability 
P(G|D).  This approximation is based on a penalized maximum 
likelihood estimate.  With large amounts of data, the BIC is a good 
approximation to the full posterior (BDe) score and is faster to 
compute; however, it is known to over-penalize with small 
amounts of data. 
 Score metrics also involve the generation of a 
conditional probability table (CPT) for each node.  The tables store 
the occurrences for all combinations of parent-child values 
extracted from the discretized data (Heckerman 1996).  The 
occurrence values in the tables are called sufficient statistics.  For a 
given graph, a CPT table is made for each node.  The occurrence 
values in the tables are then used to calculate the score for each 
node.  Scores for all nodes are then summed to generate the score 
for the entire graph. 
 
Search Methods  To identify BN structures with high scores, 
search methods are employed that search for the highest scoring 
graph among a set of graphs using different heuristic methods.  
The reason for heuristic search methods is that identifying the 
highest scoring network using scoring metrics is NP complete.  As 
such, heuristic searches are iterative and thus can be run 
indefinitely and stopped at any time to reveal the highest scoring 
graph visited thus far.  The longer the search, the likely of finding 
a higher-scoring graph.  A suitable cutoff for running time is found 
empirically, where longer running times do not result in significant 
changes to the highest scoring graph found.  In our study, we tested 
three heuristic search methods: 1) greedy search with random 
restarts (Heckerman 1996), 2) simulated annealing (Heckerman 
1996), and 3) a genetic algorithm (developed in this study).  As in 
Heckeman (1996), for each type of search we used E  to denote 
the set of eligible changes to a graph and ∆(e)  to denote the 
change in score of a graph resulting from the modification Ee∈ , 
where stands for every eligible change.  In addition, we created a 
hash table (a look up table) to store the calculated scores for each 
node with a certain parent set.  We found that this improved the 
performance of the search significantly, saving computational time 
by avoiding the recalculation of sufficient statistics in the CPTs 
when revisiting a previous set of parents for a given node. 

Greedy search with random restarts initializes itself by 
choosing a random graph, then evaluates the change in score ∆(e)  
associated with every possible change Ee∈ , and finally selects 
the change for which ∆(e)  is maximized, provided the maximal 
∆(e)  is positive.  It proceeds in this fashion until all ∆(e)  are 
negative and no score improvement can be made.  To escape this 
local maximum, the algorithm then restarts from another random 
graph, and the entire process is repeated until the total number of 
iterations is reached. 

Simulated annealing also initializes itself by choosing a 
random graph, but is given an initial temperature 0T , a search 
parameter.  An eligible change Ee∈ is selected at random and the 
probability expression )/)(exp( 0Tep ∆=  is evaluated.  If p >1 
(which occurs whenever ∆(e)  is positive), then the change e  is 
made; otherwise, the change e  is only made with probability p .  
The procedure begins at a very high temperature so that almost 
every eligible change in the graph can be made.  As the search 

progresses, the temperature gradually decreases until a very low 
temperature is reached where very little change is made in the 
graph.  The search then performs similarly to the local searches 
of the random greedy method. 

A genetic algorithm (GA) (Goldberg 1989) is a search 
method using three operators to explore a space of solutions or, 
in our case, a set of graphs. The three operators are: 
reproduction, which promotes the best graphs to the next 
generation, mutation, which explores new graphs by introducing 
variation in the population to avoid local optima, and crossover, 
which selects a swapping point in the parents and exchanges 
information between them to generate two new graphs, thereby 
increasing the average quality of a population.  We are not 
aware of a GA being applied to BN searches, and thus explain 
the operations we implemented in more detail.  In our genetic 
algorithm, we generated a mutation operation that makes a local 
change in any possible edge in the graph structure.  We 
generated a crossover operation that swaps parts of two graphs. 
Graph structures are specified as the set of parents for every 
node, where graph i is donated as 

iniii XPaXPaXPa )}(),...,(),({ 21  and graph j as 

jnjjj XPaXPaXPa )}(),...,(),({ 21
.  To crossover, a randomly 

chosen variable kX  becomes the swap point leading to two new 
structures, graph i’ 
{Pai(X1), ...,Pai(Xk),Pa j (Xk+1)...,Pa j(Xn )}i'  and graph j’ 

{Pa j (X1), ...,Pa j(Xk),Pai(Xk+1)...,Pai(Xn )} j '
.  For each GA 

iteration, either a mutation or a crossover operation is chosen at 
random and the newly created graphs are reproduced in the next 
generation if they have higher scores than the current graphs in 
the stored population.  As it is possible for crossovers to create 
bi-directional edges, we check for and eliminate such graphs. 
 
Influence Score:  Many BN inference algorithms applied to 
molecular biology are useful for predicting which genes regulate 
which others, but often do not predict the magnitude or even the 
sign of regulation (an exception is Hartemink et al 2001).  Here 
using a different approach, we took advantage of the CPT table 
logic.  The occurrence numbers in CPT tables suggest 
relationships between nodes.  Here, we generated CPT-like 
tables, which we call influence tables, for each pair of connected 
nodes in the highest scoring graph.  The values in the influence 
tables are 
occurrences 
from the 
discretized data 
according to the 
highest graph.  
An example of 
an influence 
table, when there 
is only one 
parent node per 
child node, is 
shown in Table 
1.  Here, three 
category 
discretization 
was used: low 
(L), medium 
(M), and high 

Parent  
L M H 

L LL ML HL 
M LM MM HM 

 
Child 

H LH MH HH 
Table 1: An example influence score table.  
The table is a modified version of a CPT 
without prior knowledge information.  Both 
the parent and child states are discretized as 
L, M, or H. The values in the cells represent 
the occurrence of each parent-child 
combination where the first descriptor (L, M, 
or H) is the parent and the second (L, M, or 
H) is the child.  For clarity, this table 
contains the simple case where there is only 
one parent per child.  In practice, the table 
has more dimensions to account for multiple 
parents.  



(H).  The occurrence values in the table are then described as 
combinations, for example, where HL is the number of times in the 
data that the parent is high and the child is low.  When for a given 
node the occurrence of LL and HH is greater than the occurrence 
of LH and HL, then parent gene can be said to be an activator of 
the child gene.  And vice-versa, for the parent being a repressor.  
This is even the case without considering MX values.  Thus, to 
calculate an influence score from these occurrence values, we used 
the following formulas: 

HLLL
HLLLHLLL

+
−

=_  and 
LHHH
LHHHLHHH

+
−

=_  

 

LHLL
LHLLLHLL

+
−

=_  and 
HLHH
HLHHHLHH

+
−

=_  

The signs (+ or -) of the numerators determines the sign of the 
gene regulation.  When LL-HL and HH-LH is greater than 0, and 
LL-LH and HH-HL is greater than 0, then the parent is considered 
an activator and gets a + sign.  The reverse is the case when both of 
these values are less than 0, then the parent receives a – sign. 
Different combinations of these values, such that one is greater and 
the other is less than 0, the score changes to less positive or less 
negative, or to just 0 (no sign can be determined).  The numerator 
scales the denominator to generate values between -1 and 1.  With 
four such values, the final sign and magnitude of the influence is 
calculated with the next set of rules and formulas: 
 First set the influence score to 0. 
 If both of LL_HL and HH_LH are greater than 0 (LL 
and HH dominate), then add the magnitude (LL_HL*HH_LH)/2 to 
the influence score 0.  If both of LL_HL and HH_LH are less than 
0 (HL and LH dominate), then subtract (LL_HL*HH_LH)/2 from 
the influence score 0.  Otherwise, keep the influence score 0. 
 Perform similar operations for LL_LH or HH_HL.  
After, add both values from both sets of operations and sum them 
to obtain the final influence score.   
 These two symmetric steps are used to average the 
effects from different directions.  If several parents are present, the 
same calculation is done with the other parents fixed in each 
possible configuration; the average of these influence scores is 
then used. Regardless of the number of levels of discretization, 
only the lowest and highest categories are included into the 
calculation.   

In the above manner, the influence score is mapped to a 
range between –1 and 1.  Stated in terms of gene expression, 
positive numbers reflect activating relationships of a parent on a 
child gene, while negative numbers reflect repressing relationships.  
The magnitude of the influence score is suggestive of the gene 

regulation strength, which means the more positive the score is, 
the stronger the up-regulation is; the more negative the score is, 
the stronger the down-regulation is.  When the influence score is 
close to 0, it is difficult to infer the type of regulation (up or 
down). 

 
 

RESULTS 
 
We first present results generated by the simulator, then examine 
different configurations for the BN inference algorithm using the 
same simulated data set. We then examine different sampling 
and data processing methods using different data sets. 
 
GeneSimulator 
Using GeneSimulator, we simulated a genetic regulatory system 
defined in a matrix A  of relationships with the structure shown 
in the left half of Figure 1.  Twelve of twenty genes (genes 0 to 
11) were connected in a regulatory pathway.  In addition a 
feedback connection, from gene 7 to gene 0, was included.  The 
other eight genes (genes 12 to 19) were not connected to other 
genes; i.e., they were independent of all other genes.  The 
absolute regulation strength for each connection was set to be 
the same: 0.1.  Consequently, in the matrix A , for every up-
regulation of gene y from gene x, 1.0),( =xyA ; if the 
relationship is one of down-regulation, then A(y,x) = −0.1 .  If 
there is no connection between genes x and y, the corresponding 
entry A(y,x) = 0.  To show how GeneSimulator works, we ran 
it for 500 time points and plotted expression levels for four of 
the regulated genes in the right half of Figure 1.  The results are 
consistent with the relationships specified by the original 
structure: when gene 4 increase gene 5 decreases, consistent 
with gene 4 down-regulating gene 5; gene 6 engages in a 
random walk, consistent with it having no regulator; when gene 
5 is high and 6 is low, gene 9 is high, and this is consistent with 
gene 9 being both up-regulated by 5 and down-regulated by 6.  
Moreover, the changes in expression occur over a series of time 
steps.  Although our time steps are unitless, if each is considered 
to be one minute, they match well the time-scale noted for gene 
expression in actual biological systems (Jarvis and Nottebohm 
1997).  This underlying regulatory structure was used for all of 
experiments, except for the complexity of network section. As 
such, throughout the paper Figure 1 (left) is to be compared 
with all other figures. 
 

Bayesian Network Inference Algorithms 
Initially we sampled data from GeneSimulator output on 
a small scale—20 or fewer sampled time points—
matching what would be done experimentally using 
microarrays or other approaches. However, we found 
that such small sample sizes, without further data 
processing, as described in the Data Collection Methods 
section below, were not sufficient for recovering the 
simulated structure.  In this section, to more effectively 
evaluate the BN and the different configurations we 
made, we ran GeneSimulator with the system of Figure 
1 (left) for 10,000 time points and sampled at an interval 
of every 5 time points, yielding a total of 2000 sampled 
time points. 
 
Bayesian Scoring Metrics:  To compare the BDe and 

Figure 1:  Regulatory network and gene expression time sequence plot. 



BIC scoring metrics, we chose to use a 3-category hard 
discretization of the data and a greedy search method with 1000 
random restarts.  Compared with the original simulated structure in 
Figure 1 (left), the BN inference algorithm under these conditions 
had remarkably good recovery, using either scoring metric (Figure 
2).  All genes (nodes) in the connected networks and most 
interactions (edges) were recovered.  For the BDe scoring metric, 
the top graph (highest scoring graph) had exactly the same 
regulatory structure as the simulated system.  For the BIC scoring 
metric, the top graph had two edges missing.  We conclude that the 
BDe score works better than the BIC score in recovering the 
underlying simulated genetic regulatory pathway given this 
quantity of sampled data.  The missing edges under the BIC score 
are consistent with its known over-penalization of model 
complexity. 
 
Influence Score:  We found that our heuristic influence score 
function worked, and it gave reasonable results when compared 
with the type of regulation (up or down) in the simulated system 
(Figure 3).  The signs of the interactions (+ and –) were all 
correctly identified (compare Figure 1 with Figure 3).  The 
absolute magnitudes of the influences scores in the recovered 
networks (0.11-0.63) and the regulatory strengths specified in the 
simulated system (0.1) although in the same range, were not 
directly comparable.  Furthermore, in the recovered network when 
a node had more than one parent, the edges from those parents had 
lower influence score magnitudes than if the node had just one 
parent.  This is the case because the influence of one parent to its 

child is obscured by the influences from the other parent, and the 
resulting difference is an artifact of how the influence score is 
calculated.  Given these weaknesses, the influence scores still 
reflected relatively well the gene relationships.  For genes with 
one versus two parents, the influence scores of the recovered 
edges are similar within each case (~0.6 for single parents; ~0.3 
for two parents, Figure 3) as in the simulated network.  We 
conclude that the influence score is capable of recovering the 
sign of the interaction, but its relative magnitude depends upon 
the number of parents. 
 
Search Methods:  To compare heuristic search methods, we 
used BDe score with 3-category hard discretization.  Because it 
is difficult to set a fair stopping criterion for different search 
methods, we let each of them run long enough that they did not 
make any improvement for many iterations (determined 
empirically).  We compared three search methods: greedy search 
with random restarts, simulated annealing, and a genetic 
algorithm.  All three yielded the same top graphs with exact 
matches to the simulated system, as in the left of Figure 2.  
However, we found that with this data set greedy search took the 
least time (minutes) to find the correct graph with the highest 
score; simulated annealing a longer time (10s of minutes); and 
genetic algorithm took the greatest amount of time (~hrs).  We 
conclude that the three search methods worked equally well in 
terms of the top graph found, but the greedy search is best as it 
can find the top graph in the least amount of time.  

  
Data Processing and Collection Methods 
For this section, we used the BDe scoring metric and the greedy 
search method with 1000 random restarts. 

 
Discretization:  Using the same data set as above, we compared 
the performance of the BN inference algorithm with 
discretization into different numbers of categories: hard 
discretization into 2, 3, and 4 categories.  The top graph found 
for each is shown in Figure 4.  All of these discretization 
approaches allowed recovery of relatively similar graphs to the 
simulated system.  Only the 3-category discretization found 
exactly the same regulatory graph as the simulated system.  In 
the case of the 2-category discretization, extraneous edges were 
found.  These likely emerged because too much of the 
information contained in the data was lost in the overly-coarse 
discretization.  On the other hand, the 4-category discretization 
led to some difficulty recovering edges whose children had 

Figure 2: Comparison of graphs found using BDe (left) and BIC 
(right) scores methods. Shown are the top graphs found.  Red – correct 
edges found by one method and not the other.  The arrows in these graphs 
only specify direction, not positive or negative interactions. 

 
Figure 3: Graph with influence 
scores. Numbers besides the edges 
are influence scores from the top 
BDe generated graph of Figure 2. 

Figure 4: Comparison of number of discretization categories, with hard boundaries.  Black – correct edges 
in common between all three graphs.  Red – correct edges found in only one or two of the graphs.  Blue – 
incorrect edges.  Numbers beside edges are influence scores. 



multiple parents, and instead it found incorrect edges from their 
grandparents.  We believe this occurs because increasingly fine 
levels of discretization spreads out the data entered in the CPTs, 
such that individual occurrence values are weakened.  To 
strengthen these values, intuitively, would require more data. 

We next compared hard with soft discretization using 3-
categories (Figure 5).  Compared with hard discretization, soft 
discretization missed edges to genes with 2 parents; only one of the 
parents could be found.  We conclude that with our simulated data 
the 3-category hard discretization works best in allowing recovery 
of the simulated genetic pathway.  All subsequent analysis below 
uses 3-category hard discretization. 
 
Sampling Amount, Intervals, and Coverage:  Since sampling 
amount, intervals, and 
coverage are dependent on 
each other, it is not possible 
to test their effects on BN 
recovery independently.  
however, testing their effects, 
can be done by multi-
comparisons.  First, we 
sampled different data 
amounts at the same interval, 
5, which effectively changes 
time coverage across the 
simulated output (Figure 
6A).  Second, we sampled 
different data amounts with 
the same overall coverage, 
10,000 time points, which 
effectively this changes the 
sampling interval (Figure 
6B).  Third, we sampled at 
different intervals with the 
same data amount, 500 data 
points, which effectively 
changes the overall coverage 
(Figure 7).  In each case, two 
out of three variables change 
at the same time.  Thus, 
when the recovery result is 
different between graphs of 
the different comparisons 
(Figures 6A, 6B, and 7), the 
responsible variable is one or 

both of the changing variables.  To decided with a degree of 
confidence which one it is, the common differences between 
graphs of two different changing situations (for example the 
common edges in first graph of Figure 6A and first of 6B 
compared with their differences in the second graph of 6A and 
6B) are due to the effect of the common variable that changes in 
both.  As expected, the more data collected, the better the 
recovery of the simulated system (compare within both Figures 
6A and 6B).  Increased coverage does not appear to significantly 
improve recovery (compare within both Figures 6A and 7).  
This counterintuitive result, implies that at the coverage across 
the simulation is already well represented in our sampling 
ranges. Interestingly, when changing the sampling interval, 
there appears to be an optimum (interval of ~5) that led to the 
best recovery (compare within both Figures 7 and 6B).  At 
interval of 1 (taking every time point, but with a small coverage 
time of 500) fewer correct edges were found.  Increasing the 
sampling interval to 5, more correct edges were found.  But as 
the sampling interval increased more (to 10 and 20) incorrect 
edges appeared (Figure 7 and 6B), even though in one there is 
more coverage (Figure 7). The explanation for these differences 
in Figure 7 is that the small sampling interval yields small 
coverage, not giving much information between any two points 
spread distantly in time, while the large sampling interval, 
although it yields large coverage, also loses a large amount of 
information between any two points. 

In all types of comparisons, it was difficult recover 
both edges of genes with multiple parents (genes 0 and 1 to 2; 
genes 5 and 6 to 9; and genes 8 and 9 to 10).  The main variable 
that had the strongest effect on the recovery of edges from both 
parents was increasing data amount sampled (compare Figures 

Figure 5: Comparison for hard (left) and soft discretization (right).  Red 
– correct edges found in the top graph by one method and not the other. 
Numbers beside edges are influence scores. 

Figure 6: Comparison for changes in data amounts and coverage with same intervals (A) or changes in 
data amount and intervals with same coverage time (B).   From left to right, the number of data points 
increases.  Top graphs are shown.  Numbers beside edges are influence scores.  Red – correct edges found in 
only one or two graphs.  Blue – incorrect edges.  



6A, 6B, 7).  The type of errors found with large sampling intervals 
were not completely erroneous, but were all incorrect edges from 

grandparents (Figure 6B and 7).  There is also an interval effect 
on our influence score, such that the score increased as sampling 
intervals increased, until the scores was reduced by the 
appearance of incorrect multiple parents at very high sampling 
intervals (Figures 6A and 7).  The initial increased interval 
effect on the influence score makes sense because the magnitude 
of the difference in expression of a gene between two time 
points increases as the interval increases.  We conclude that with 
our data set, sampling amount and interval has the largest effect 
on BN recovery. There is an optimum interval, which will 
depend upon the underlying timing of the gene regulatory 
pathway under study. 

 
Biological Sampling and Interpolation of Data Points:  In an 
actual biological gene expression experiment, the amount of 
data collected is much smaller than that used in the above tests.  
To mimic the maximum amount of data that could be 
reasonably collected in a microarray experiment, we limited the 
total number of data points to be from 100 cDNA microarray 
slides.  With this pre-determined total number, we investigated 
the best possible way to allocate the animal samples.  For 
example, should we sample 100 time points with one animal 
each time point or 25 time points with four animals each time 
point.  For this amount of data, we found that the recovery 
results changed with different data sets from repeated 
experiments, unlike the bigger data sets above which yielded 
quite stable results from repeated experiments.  To better 
understand this variation, we collected 10 different data sets for 
each of these tests, passed each one separately through the BN 
algorithms and obtained the average results (Figure 8A).  The 
edges that appear frequently across the 10 data sets are of 

Figure 7: Comparison for sampling intervals.  Labeling is the same as is 
described in Figure 7 legend.  Numbers beside edges are influence scores. 

Figure 8: More biologically reasonable sampling with different strategies (A) and performance of interpolating data (B).  Shown are the average 
top graph results from 10 datasets each.  Black dashed edge – only found once in 10 recovery results.  Black solid edge – find more than once but less 
than 5 times in 10 recovery results.  Red solid edge – find more than or equal to 5 times in 10 recovery results.  Numbers beside edges – occurrence (left 
of slash) and average of influence score (right of slash); these only appear beside the edges found more than once. 



greater confidence.  Here we used a sampling interval of 5 because 
this worked best in our previous tests. 
 With this amount of data, only a partial understanding of 
the regulatory system was recovered, and many originally 
independent genes were incorrectly included the resultant graph 
(Figure 8A).  As the number of animals increased, there was no 
important change until 10 animals per time point in 10 time points.  
The number of edges found were dramatically decreased, but for 
both correct and incorrect edges.  The number genes included in 
the graph also decreased, but in this case mostly for those that were 
not part of the original regulatory system.  Another interesting 
result is that most of the incorrect edges revealed (both solid and 
dashed lines) had influence scores of 0 (Figure 8A, scores not 
shown for dashed lines), and this can be used to eliminate such 
edges. 
 We tested whether the recovery performance would be 
improved by interpolating data points.  We kept the sampling 
method the same, except for the sampling interval.  We increased 
the sampling interval, to 20, to have sampling time between points 
for interpolation.  This resulted in increased coverage, but kept the 
number of data sampling amount the same.  We linearly 
interpolated five data points between every two sampled data 
points, resulting in a six-fold increase in the amount of available 
data, though only 20% of it corresponds to actual sampled data.  
The corresponding results are shown in Figure 8B.  Regardless of 
the sampling approach, we found that recovery results much 
improved compared with the results from the raw data points 
without interpolation.  The genes in the connected network were 
correctly identified and no 
independent genes were 
implicated.  Most of the 
correct edges were found 
with high occurrence and all 
with the correct signs of the 
influence score.  The 
principal missing 
connections still involved 
nodes with multiple parents.  
Some of the incorrect edges 
were actually found from a 
grandparent, such as from 
gene 7 to 2, gene 4 to 9, and 
gene 3 to 10.  Though 
technically incorrect, they 

can supply useful 
information.  We conclude 
that when using 
biologically reasonable 
expression data sampling, 
BN inference algorithms 
appear to be able to 
partially recover the nodes 
of the underlying genetic 
pathway and their single 
parent interactions, 
especially when the data is 
interpolated.  Our BN 
inference algorithm 
appears to be less good at 
recovering multiple 
parents per node within the 
constraints of biologically 

reasonable amounts of data.   
 To investigate this more closely, we tested the data 
interpolation performance with an even smaller data amount 
(Figure 9).  Using 50 data points without  interpolation, the 
recovered genetic system was a mess (Figure 9, left).  However, 
when using 50 data points with interpolation (Figure 9, middle) 
the recovery was much better, even better than that from 100 
data points without interpolation (Figure 8A).  From 25 data 
points without interpolation, the recovery result was too messy 
to be shown, but with data interpolation (Figure 9, right), the 
recovery is comparable with that from 100 data points without 
interpolation.  All the results presented in this section are 
computed using the BDe score function; when we tried using the 
BIC score function, no edges were found, again confirming that 
the BIC over-penalizes for over-complexity and that this 
excessive penalty is most apparent in the limit of small amounts 
of data. 

 
Non-uniformly Sampled Data:  Many biological experiments 
sample gene expression data in a non-uniform manner.  We 
tested the effect of non-uniform sampling on BN recovery.  Here 
the intervals between successive samples is a number chosen at 
random between 15 and 25.  With a small amount of data, we 
found that non-uniform interval datasets can recover part of the 
simulated system only when data interpolation was used (Figure 
10).  The recovery results are comparable with that from 
uniformly sampled datasets. 
 

Figure 9: Data interpolation for smaller amounts of data: 50 (middle) and 25 (right) data points compared with 
50 uninterpolated data points (left).  Labeling is the same as is described in Figure 9 legend.

Figure 10: Recovery results from non-uniformly sampled dataset.  Labeling is the same as is described in 
Figure 8 legend.  The intervals for successive samples were chosen at random between 15 and 25. 



Complexity of the Network 
The pathway that we simulated has perhaps less complexity than is 
likely to be found in biological systems.  To test some additional 
complexity, we used GeneSimulator to generate data for a pathway 
that includes one node with three parents instead of two (gene 2), 
as well as two independent genetic pathways (Figure 11, left).  

Using our standard conditions of small-data sampling, we were 
able to recover most of both independent pathways (not shown).  
However, to recover the three parents to one child, we found that 
we needed to collect at least 5000 data points (Figure 12, right), 
and the recovered edges had very low influence scores (red).  We 
conclude that BN inference algorithms are able to recover 
independent genetic pathways inherent in one data set, but that as 
the number of parents per node grows, the amount of expression 
data needed to recover the entire network will dramatically grow, 
perhaps to an extent that the collection of this data becomes 
impractical. 
 
 
DISCUSSION 
 
In this study, we tested and modified the ability of BN inference 
algorithms to recover genetic pathways from simulated gene 
expression data.  We found that the structure of the underlying 
network and the methods used for data processing and sampling 
had a critical impact on the ability to recover accurate pathways.  
This conclusion is important to consider when using our algorithm 
on actual gene expression data, such as that collected using high-
density microarrays. 

We found that the best BN inference algorithm for 
recovering the simulated genetic pathways was a greedy search 
method with random restarts, employing the BDe scoring metric 
and being given data discretized using a 3-catergory hard 
discretization.  In addition, our influence scores were very useful in 
determining up or down regulation and the relative magnitude of 
regulation.  We also found that there was an optimal sampling 
interval and efficient amount of data that allowed our BN inference 
algorithm to recover the most accurate pathway. We found that the 
BIC score does not work as well as the BDe score because the BIC 
score yields fewer edges or no edge with biologically reasonable 
sampling.  This happens because BIC applies a strong penalty for 
more complex structure.   

One of the key improvements we made to our inference 
algorithm for use with gene expression data is the generation of 
influence scores.  These scores can determine positive or negative 
interactions and select against low-scoring incorrect interactions.  
This improves the accuracy of the network and increases the 
amount of information recovered.  

Three-category discretization was optimal for the 
simulated dataset we examined.  This may seem 
counterintuitive, as discretization leads to information loss from 
the data: the more coarse the discretization, the more the 
information loss.  While this is true, it is not however the case 
that finer discretization results in better BN recovery.  This is 
because with more discretization levels, the more CPT values 
are spread and also the more BN parameters must be estimated, 
and as a result, more data points are needed to confidently 
predict edges between nodes.  In addition, discretization with 
hard boundaries outperformed discretization with soft 
boundaries.  It is possible that because soft discretization also 
spreads out the distribution of the data, some of the BN 
relationships are not significant enough under soft discretization 
to warrant inclusion of an edge.  

Based on the results of this study, we believe the 
major limitation in discovering regulatory networks from gene 
expression experiments is collecting a sufficient quantity of data 
to effectively recover all the interactions in the genetic network, 
especially those associated with genes with multiple parents.  
Data collection in the context of complex organisms is limited 
by the physical constraints of the experimenter and the number 
of animals that can be sacrificed for any one given experiment.  
Although we found here that our BN inference algorithm will 
discover genetic regulatory pathways from biologically 
reasonable amounts of data, the generated pathways can be 
misleading.  Fortunately, interpolation of data from these 
smaller samples sizes with good coverage of the simulated gene 
expression pathway can at least yield a significant number of 
correct genes and their interactions.  Moreover, many of the 
incorrect interactions found are from grandparents, which at 
least places genes only one gene removed from their true 
regulator.  However, our BN inference algorithm had difficulty 
identifying more than one parent for genes with multiple 
parents.  This is a serious problem for genetic pathway recovery, 
as combinatorial regulatory control is a basic property of genetic 
pathways.  However, the solution to this problem lies in not 
attempting to recover complex pathways from limited amounts 
of expression data alone.  Other types of data can be brought to 
bear and, when used in conjunction with expression data, can 
significantly enhance the ability to accurately recover regulatory 
network structures (Hartemink et al 2002). 

Finally, we suspect that the performance of our BN 
inference algorithm depends in part on how the networks are 
simulated.  Though we included noise in generating our 
simulated data, the data are clearly not a perfect simulation of 
true experimental data; some meaningful biological information 
is always lost in mathematical modeling.  Future efforts need to 
be focused on using more real data to improve how well the 
output of the simulator matches real world data.  Effort also 
needs to be on simulating interaction of genes products within 
the same cell versus across cells. As such, the recovery results 
produced by our BN inference algorithm are not intended to 
serve as a substitute for gene intervention experiments, but 
rather as a guide for optimally designing easier to perform 
correlational experiments for use with inference algorithms and 
to approximate the accurate genetic pathway leading to easier to 
test intervention experiements. 
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