
Using Bayesian Network Inference Algorithms
to Recover Molecular Genetic Regulatory Networks

Jing Yu1,2, V. Anne Smith1, Paul P. Wang2, Alexander J. Hartemink3, Erich D. Jarvis1

1Duke University Medical Center, Department of Neurobiology, Box 3209, Durham, NC 27710
2Duke University, Department of Electrical Engineering, Box 90291,Durham, NC 27708

3Duke University, Department of Computer Science, Box 90129, Durham, NC 27708

Recent advances in high-throughput molecular biology has motivated in the field of bioinformatics the use of network
inference algorithms to predict causal models of molecular networks from correlational data. However, it is extremely
difficult to evaluate the effectiveness of these algorithms because we possess neither the knowledge of the correct
biological networks nor the ability to experimentally validate the hundreds of predicted gene interactions within a
reasonable amount of time. Here, we apply a new approach developed by Smith, et al. (2002) that tests the ability of
network inference algorithms to accurately and efficiently recover network structures based on gene expression data
taken from a simulated biological pathway in which the structure is known a priori. We simulated a genetic regulatory
network and used the resultant sampled data to test variations in the design of a Bayesian Network inference algorithm,
as well as variations in total quantity of available data, length of sampling interval, method of data discretization, and
presence of interpolated data between observed data points. We also advanced the inference algorithm by developing a
heuristic influence score that infers the strength and sign of regulation (up or down) between genes. In these experiments,
we found that our inference algorithm worked best when presented with data discretized into three categories, when
using a greedy search algorithm with random restarts, and when evaluating networks using the BDe scoring metric.
Under these conditions, the algorithm was both accurate and efficient in recovering the simulated molecular network
when the sampled data sets were large. Under more biologically reasonable small amounts of sampled data, the
algorithm worked best only when interpolated data was included, but had difficulty recovering relationships describing
genes with more than one regulatory influence. These results suggest that network inference algorithms and sampling
methods must be carefully designed and tested before they can be used to recover biological genetic pathways, especially
in the context of highly limited quantities of data.

INTRODUCTION

The advent of novel technologies for collecting high-throughput
data in molecular biology has led to the concurrent development of
bioinformatics tools for analyzing this data. Computer scientists
and bioinformaticians soon realized that common inference
algorithms used in other fields can be applied to these large
amounts biological data, such as those from microarrays, to
statistically predict causal molecular pathways. However, these
potentially powerful algorithms are limited by our inability to
evaluate their accuracy, as we do not know the true biological
network in which to compare them with and experimenters can not
physically perform in reasonable time the multiple gene knockouts
or other types of interventions required to systematically test the
predicted networks.

As part of an ongoing project dedicated to integrating the
songbird brain (Jarvis et al. 2002), Smith, et al. (2002) developed a
novel approach for evaluating the accuracy and efficiency of
network inference algorithms in a reasonable amount of time. This
approach requires the creation of a biologically reasonable
simulation on a computer in which the experimenter makes and
knows all the rules. As the simulation runs, data is sampled from it
as one would sample data from a real biological system. The
sampled data is then passed to an inference algorithm to evaluate
the algorithm’s ability to recover the simulated system. The
inference algorithm can then be modified and made more robust to
recover a network that closely matches the simulated system.
After confident recovery of the system from limited simulated data
is achieved, the algorithm can be applied to real data. The
recovered system can then be used to guide further biological

experimentation for verifying the predicted regulatory
relationships.

In our first use of this approach (Jarvis et al. 2002;
Smith et al. 2002), we incorporated multiple levels of biological
organization, from the molecular to the behavioral. Here, we
attempt to look more closely at a single level of biological
organization, the molecular level. We developed a simulator,
which we named GeneSimulator, that models genetic regulatory
networks and generates correlational data similar to that
collected from high-density gene microarrays. We then
evaluated various Bayesian network (BN) inference algorithm
designs for their ability to recover the underlying genetic
regulatory network. We chose to use a BN algorithm, because
compared with other common algorithms (Somogyi and
Sniegoski 1996; D’haeseleer et al. 1999; Weaver et al. 1999),
BN have the ability to simultaneously model non-linear
combinatorial relationships, robustly handle noisy data sets, and
guard against over-fitting. BN can not handle networks with
cyclic structures, such as regulatory feedback loops; however,
dynamic Bayesian networks (DBN) can handle cyclic structures
(Friedman et al. 1999; Murphy and Mian 1999). We used DBN,
and when so configured, they are also capable of coping with
hidden variables that are not observed in the data, such as
protein levels or protein interactions that affect the measured
gene expression data. In the DBN inference algorithm we
developed here, we tested different scoring metrics and heuristic
search methods, as well as different aspects of data collection
and discretization, in order to determine the best configuration
for recovering the simulated system. Our analysis provides
insight on how to more efficiently use BN inference algorithms
for discovering genetic networks from correlational data.

International Conference on Systems Biology 2002 (ICSB02), December 2002.

METHODS AND LOGIC

GeneSimulator
GeneSimulator is programmed in Matlab (MathWorks, Inc.). It
models genetic regulatory pathways of arbitrary structure
(topology) and produces values of gene expression levels at
discrete time points. Updates to values at each time step are
governed by a simple stochastic process:

ε+−==+)()(1 TYAYfY ttt
where Yt is a vector representing the expression levels of all genes
at time t , with expression levels ranging from 0 to 100 (arbitrary
units). A is a matrix that represents the relationships of gene
interactions in the underlying regulatory pathway. For every entry
of A , the magnitude of the entry represents the strength of the
regulation that a regulator gene exerts upon a target gene; the sign
indicates the type of regulation, with positive values indicating up-
regulation and negative values indicating down-regulation. T is a
vector of threshold regulating values for each gene: a regulatory
gene exerts an influence on its target gene only to the extent that it
differs from its threshold value. In this study all gene thresholds
have been set to half of the maximum value; i.e., every entry of
T is exactly 50. If the regulator gene is present at a level above its
threshold value, then its regulatory effect on its target genes occurs
as specified in A . Contrarily, if the regulator gene is present at a
level below its threshold value, then its effect is in the opposite
direction of that specified in A to return the gene to its basal level.
The ε term is white noise, drawn uniformly at random from the
interval –10 to 10. This term is added for stochasticity and is
meant to capture all sources of noise, especially inherent biological
noise. If a gene has no regulator (the corresponding entries in A
are all zero), then it will move in a random walk, with steps taken
according to the values of ε. As the simulation runs, the data is
sampled in pre-specified intervals as one would do in an actual
biological experiment, and the samples are exported to a text file.
For example, if we collect data every five time points, then we
define the sampling interval to be 5, and the sampled output is the
series of expression level vectors (Y0,Y5,Y10 ,......), analogous to
data gathered in a microarray time course experiment.

Data Processing and Collection Methods
Discretization: Before being passed to our DBN inference
algorithms, the data we collect needs to be discretized. Discrete
data allows us to model complex non-linear interactions between
genes without resorting to computationally prohibitive calculations
over continuous distributions. In this study, we discretized the
sampled expression levels generated by GeneSimulator from
continuous values into various numbers of categories to determine
if finer or coarser discretization improves recovery accuracy. We
also evaluated two general types of discretization strategies: hard
and soft. Hard discretization employs firm boundaries between
categories, requiring a given expression level to belong to only a
single category. Soft discretization employs fuzzy boundaries
between categories, allowing a given expression level to belong to
two or more categories with different percentages each. Other data
processing and collection methods are described in the results.

Bayesian Network Inference Algorithms
Our DBN inference algorithms are written in C++ and are
designed to search for high-scoring graphical models (networks)

that describe probabilistic relationships between variables. The
score that is computed for a graph generated from the data
collected and discretized is a measure of how successfully the
graph explains the relationships in the data and also how simply
it does so. Graphs are penalized for over-complexity or over-
generality so there is a resultant bias towards simpler graphs.
This guards against over-fitting the model to the data.

Every node in the BN graph represents a single
variable, here one gene. Every directed edge, or lines with
arrows, between two nodes represents a conditional statistical
dependence of the child node on the parent node. In the context
of a DBN fro recovering a genetic regulatory network, each
edge indicates a regulatory relationship in which the parent gene
regulates the child gene at a later time.

Basic Theory of BN: A static BN (Friedman et al. 2000) is an
acyclic directed graph that encodes a joint probability
distribution over χ, where χ= {X1,...,Xn } is a set of discrete
random variables iX . The BN for χ is specified as a pair

< G,Θ> . The variable G represents a directed graph whose
vertices correspond to the random variables nXX ,...,1 . In this

graphical representation, each variable iX is independent of its

non-descendants given its parents in G . The variable Θ
represents a set of parameters that collectively quantify the
probability distributions associated with the variables in the
graph. Each parameter of Θ is specified by

))(|()(| iiXpax XpaxP
ii
=θ , for each possible value ix of iX ,

and each possible value)(iXpa of)(iXPa .)(iXPa denotes
the set of parents of iX in G and)(iXpa denotes a particular
instantiation of the parents. Thus, a BN specifies a unique joint
probability distribution over χ given by:

∏ ==))(|(),...,(11 ii
n
in XPaXPXXP

These notions extend quite naturally to DBN, which
we exploit here in the context of time series data (for more
details, see Murphy and Milan 1999).

The problem of discovering a BN from a collection of
observed data can be stated as follows. Given a data set
D ={Y1,Y2,Y3,......Yn }of observed instances of χ, find the most
probable graph G for explaining the data contained in D. One
common approach to this problem is to introduce a scoring
metric that evaluates how probable each graph G explains the
data in D. In the presence of such a scoring metric, the problem
of discovering a BN then reduces to the problem of searching
for a graph that yields a high score, given the observed data in
D. To search the highest scoring graph, a particular search
method needs to be used.

Bayesian Scoring Metrics: The Bayesian scoring metric can be
generally described (Heckerman 1996) as:

)(log)(log)|(log)|(log):(DPGPGDPDGPDGScore −+==
Which states that the score of the graph G given data in D is
equivalent to the log of the probability of G given D. In this
study, we investigated two types of scoring metrics that employ
different assumptions: the BDe (Bayesian Dirichlet equivalent)
and the BIC (Bayesian Information Criterion) scoring metrics.
Both scoring metrics have an inherent penalty for over-
complexity to guard against over-fitting of data. The BDe score
captures the full Bayesian posterior probability P(G|D). In this

setting, the prior over graphs needs to be specified (we use a
uniform prior) and the prior over parameters is Dirichlet, i.e. a
multinomial distribution describing the conditional probability of
each variable in the network. The BIC score instead of capturing,
is an asymptotic approximation to the full posterior probability
P(G|D). This approximation is based on a penalized maximum
likelihood estimate. With large amounts of data, the BIC is a good
approximation to the full posterior (BDe) score and is faster to
compute; however, it is known to over-penalize with small
amounts of data.
 Score metrics also involve the generation of a
conditional probability table (CPT) for each node. The tables store
the occurrences for all combinations of parent-child values
extracted from the discretized data (Heckerman 1996). The
occurrence values in the tables are called sufficient statistics. For a
given graph, a CPT table is made for each node. The occurrence
values in the tables are then used to calculate the score for each
node. Scores for all nodes are then summed to generate the score
for the entire graph.

Search Methods To identify BN structures with high scores,
search methods are employed that search for the highest scoring
graph among a set of graphs using different heuristic methods.
The reason for heuristic search methods is that identifying the
highest scoring network using scoring metrics is NP complete. As
such, heuristic searches are iterative and thus can be run
indefinitely and stopped at any time to reveal the highest scoring
graph visited thus far. The longer the search, the likely of finding
a higher-scoring graph. A suitable cutoff for running time is found
empirically, where longer running times do not result in significant
changes to the highest scoring graph found. In our study, we tested
three heuristic search methods: 1) greedy search with random
restarts (Heckerman 1996), 2) simulated annealing (Heckerman
1996), and 3) a genetic algorithm (developed in this study). As in
Heckeman (1996), for each type of search we used E to denote
the set of eligible changes to a graph and ∆(e) to denote the
change in score of a graph resulting from the modification Ee∈ ,
where stands for every eligible change. In addition, we created a
hash table (a look up table) to store the calculated scores for each
node with a certain parent set. We found that this improved the
performance of the search significantly, saving computational time
by avoiding the recalculation of sufficient statistics in the CPTs
when revisiting a previous set of parents for a given node.

Greedy search with random restarts initializes itself by
choosing a random graph, then evaluates the change in score ∆(e)
associated with every possible change Ee∈ , and finally selects
the change for which ∆(e) is maximized, provided the maximal
∆(e) is positive. It proceeds in this fashion until all ∆(e) are
negative and no score improvement can be made. To escape this
local maximum, the algorithm then restarts from another random
graph, and the entire process is repeated until the total number of
iterations is reached.

Simulated annealing also initializes itself by choosing a
random graph, but is given an initial temperature 0T , a search
parameter. An eligible change Ee∈ is selected at random and the
probability expression)/)(exp(0Tep ∆= is evaluated. If p >1
(which occurs whenever ∆(e) is positive), then the change e is
made; otherwise, the change e is only made with probability p .
The procedure begins at a very high temperature so that almost
every eligible change in the graph can be made. As the search

progresses, the temperature gradually decreases until a very low
temperature is reached where very little change is made in the
graph. The search then performs similarly to the local searches
of the random greedy method.

A genetic algorithm (GA) (Goldberg 1989) is a search
method using three operators to explore a space of solutions or,
in our case, a set of graphs. The three operators are:
reproduction, which promotes the best graphs to the next
generation, mutation, which explores new graphs by introducing
variation in the population to avoid local optima, and crossover,
which selects a swapping point in the parents and exchanges
information between them to generate two new graphs, thereby
increasing the average quality of a population. We are not
aware of a GA being applied to BN searches, and thus explain
the operations we implemented in more detail. In our genetic
algorithm, we generated a mutation operation that makes a local
change in any possible edge in the graph structure. We
generated a crossover operation that swaps parts of two graphs.
Graph structures are specified as the set of parents for every
node, where graph i is donated as

iniii XPaXPaXPa)}(),...,(),({ 21 and graph j as

jnjjj XPaXPaXPa)}(),...,(),({ 21
. To crossover, a randomly

chosen variable kX becomes the swap point leading to two new
structures, graph i’
{Pai(X1), ...,Pai(Xk),Pa j (Xk+1)...,Pa j(Xn)}i' and graph j’

{Pa j (X1), ...,Pa j(Xk),Pai(Xk+1)...,Pai(Xn)} j '
. For each GA

iteration, either a mutation or a crossover operation is chosen at
random and the newly created graphs are reproduced in the next
generation if they have higher scores than the current graphs in
the stored population. As it is possible for crossovers to create
bi-directional edges, we check for and eliminate such graphs.

Influence Score: Many BN inference algorithms applied to
molecular biology are useful for predicting which genes regulate
which others, but often do not predict the magnitude or even the
sign of regulation (an exception is Hartemink et al 2001). Here
using a different approach, we took advantage of the CPT table
logic. The occurrence numbers in CPT tables suggest
relationships between nodes. Here, we generated CPT-like
tables, which we call influence tables, for each pair of connected
nodes in the highest scoring graph. The values in the influence
tables are
occurrences
from the
discretized data
according to the
highest graph.
An example of
an influence
table, when there
is only one
parent node per
child node, is
shown in Table
1. Here, three
category
discretization
was used: low
(L), medium
(M), and high

Parent
L M H

L LL ML HL
M LM MM HM

Child

H LH MH HH
Table 1: An example influence score table.
The table is a modified version of a CPT
without prior knowledge information. Both
the parent and child states are discretized as
L, M, or H. The values in the cells represent
the occurrence of each parent-child
combination where the first descriptor (L, M,
or H) is the parent and the second (L, M, or
H) is the child. For clarity, this table
contains the simple case where there is only
one parent per child. In practice, the table
has more dimensions to account for multiple
parents.

(H). The occurrence values in the table are then described as
combinations, for example, where HL is the number of times in the
data that the parent is high and the child is low. When for a given
node the occurrence of LL and HH is greater than the occurrence
of LH and HL, then parent gene can be said to be an activator of
the child gene. And vice-versa, for the parent being a repressor.
This is even the case without considering MX values. Thus, to
calculate an influence score from these occurrence values, we used
the following formulas:

HLLL
HLLLHLLL

+
−

=_ and
LHHH
LHHHLHHH

+
−

=_

LHLL
LHLLLHLL

+
−

=_ and
HLHH
HLHHHLHH

+
−

=_

The signs (+ or -) of the numerators determines the sign of the
gene regulation. When LL-HL and HH-LH is greater than 0, and
LL-LH and HH-HL is greater than 0, then the parent is considered
an activator and gets a + sign. The reverse is the case when both of
these values are less than 0, then the parent receives a – sign.
Different combinations of these values, such that one is greater and
the other is less than 0, the score changes to less positive or less
negative, or to just 0 (no sign can be determined). The numerator
scales the denominator to generate values between -1 and 1. With
four such values, the final sign and magnitude of the influence is
calculated with the next set of rules and formulas:
 First set the influence score to 0.
 If both of LL_HL and HH_LH are greater than 0 (LL
and HH dominate), then add the magnitude (LL_HL*HH_LH)/2 to
the influence score 0. If both of LL_HL and HH_LH are less than
0 (HL and LH dominate), then subtract (LL_HL*HH_LH)/2 from
the influence score 0. Otherwise, keep the influence score 0.
 Perform similar operations for LL_LH or HH_HL.
After, add both values from both sets of operations and sum them
to obtain the final influence score.
 These two symmetric steps are used to average the
effects from different directions. If several parents are present, the
same calculation is done with the other parents fixed in each
possible configuration; the average of these influence scores is
then used. Regardless of the number of levels of discretization,
only the lowest and highest categories are included into the
calculation.

In the above manner, the influence score is mapped to a
range between –1 and 1. Stated in terms of gene expression,
positive numbers reflect activating relationships of a parent on a
child gene, while negative numbers reflect repressing relationships.
The magnitude of the influence score is suggestive of the gene

regulation strength, which means the more positive the score is,
the stronger the up-regulation is; the more negative the score is,
the stronger the down-regulation is. When the influence score is
close to 0, it is difficult to infer the type of regulation (up or
down).

RESULTS

We first present results generated by the simulator, then examine
different configurations for the BN inference algorithm using the
same simulated data set. We then examine different sampling
and data processing methods using different data sets.

GeneSimulator
Using GeneSimulator, we simulated a genetic regulatory system
defined in a matrix A of relationships with the structure shown
in the left half of Figure 1. Twelve of twenty genes (genes 0 to
11) were connected in a regulatory pathway. In addition a
feedback connection, from gene 7 to gene 0, was included. The
other eight genes (genes 12 to 19) were not connected to other
genes; i.e., they were independent of all other genes. The
absolute regulation strength for each connection was set to be
the same: 0.1. Consequently, in the matrix A , for every up-
regulation of gene y from gene x, 1.0),(=xyA ; if the
relationship is one of down-regulation, then A(y,x) = −0.1 . If
there is no connection between genes x and y, the corresponding
entry A(y,x) = 0. To show how GeneSimulator works, we ran
it for 500 time points and plotted expression levels for four of
the regulated genes in the right half of Figure 1. The results are
consistent with the relationships specified by the original
structure: when gene 4 increase gene 5 decreases, consistent
with gene 4 down-regulating gene 5; gene 6 engages in a
random walk, consistent with it having no regulator; when gene
5 is high and 6 is low, gene 9 is high, and this is consistent with
gene 9 being both up-regulated by 5 and down-regulated by 6.
Moreover, the changes in expression occur over a series of time
steps. Although our time steps are unitless, if each is considered
to be one minute, they match well the time-scale noted for gene
expression in actual biological systems (Jarvis and Nottebohm
1997). This underlying regulatory structure was used for all of
experiments, except for the complexity of network section. As
such, throughout the paper Figure 1 (left) is to be compared
with all other figures.

Bayesian Network Inference Algorithms
Initially we sampled data from GeneSimulator output on
a small scale—20 or fewer sampled time points—
matching what would be done experimentally using
microarrays or other approaches. However, we found
that such small sample sizes, without further data
processing, as described in the Data Collection Methods
section below, were not sufficient for recovering the
simulated structure. In this section, to more effectively
evaluate the BN and the different configurations we
made, we ran GeneSimulator with the system of Figure
1 (left) for 10,000 time points and sampled at an interval
of every 5 time points, yielding a total of 2000 sampled
time points.

Bayesian Scoring Metrics: To compare the BDe and

Figure 1: Regulatory network and gene expression time sequence plot.

BIC scoring metrics, we chose to use a 3-category hard
discretization of the data and a greedy search method with 1000
random restarts. Compared with the original simulated structure in
Figure 1 (left), the BN inference algorithm under these conditions
had remarkably good recovery, using either scoring metric (Figure
2). All genes (nodes) in the connected networks and most
interactions (edges) were recovered. For the BDe scoring metric,
the top graph (highest scoring graph) had exactly the same
regulatory structure as the simulated system. For the BIC scoring
metric, the top graph had two edges missing. We conclude that the
BDe score works better than the BIC score in recovering the
underlying simulated genetic regulatory pathway given this
quantity of sampled data. The missing edges under the BIC score
are consistent with its known over-penalization of model
complexity.

Influence Score: We found that our heuristic influence score
function worked, and it gave reasonable results when compared
with the type of regulation (up or down) in the simulated system
(Figure 3). The signs of the interactions (+ and –) were all
correctly identified (compare Figure 1 with Figure 3). The
absolute magnitudes of the influences scores in the recovered
networks (0.11-0.63) and the regulatory strengths specified in the
simulated system (0.1) although in the same range, were not
directly comparable. Furthermore, in the recovered network when
a node had more than one parent, the edges from those parents had
lower influence score magnitudes than if the node had just one
parent. This is the case because the influence of one parent to its

child is obscured by the influences from the other parent, and the
resulting difference is an artifact of how the influence score is
calculated. Given these weaknesses, the influence scores still
reflected relatively well the gene relationships. For genes with
one versus two parents, the influence scores of the recovered
edges are similar within each case (~0.6 for single parents; ~0.3
for two parents, Figure 3) as in the simulated network. We
conclude that the influence score is capable of recovering the
sign of the interaction, but its relative magnitude depends upon
the number of parents.

Search Methods: To compare heuristic search methods, we
used BDe score with 3-category hard discretization. Because it
is difficult to set a fair stopping criterion for different search
methods, we let each of them run long enough that they did not
make any improvement for many iterations (determined
empirically). We compared three search methods: greedy search
with random restarts, simulated annealing, and a genetic
algorithm. All three yielded the same top graphs with exact
matches to the simulated system, as in the left of Figure 2.
However, we found that with this data set greedy search took the
least time (minutes) to find the correct graph with the highest
score; simulated annealing a longer time (10s of minutes); and
genetic algorithm took the greatest amount of time (~hrs). We
conclude that the three search methods worked equally well in
terms of the top graph found, but the greedy search is best as it
can find the top graph in the least amount of time.

Data Processing and Collection Methods
For this section, we used the BDe scoring metric and the greedy
search method with 1000 random restarts.

Discretization: Using the same data set as above, we compared
the performance of the BN inference algorithm with
discretization into different numbers of categories: hard
discretization into 2, 3, and 4 categories. The top graph found
for each is shown in Figure 4. All of these discretization
approaches allowed recovery of relatively similar graphs to the
simulated system. Only the 3-category discretization found
exactly the same regulatory graph as the simulated system. In
the case of the 2-category discretization, extraneous edges were
found. These likely emerged because too much of the
information contained in the data was lost in the overly-coarse
discretization. On the other hand, the 4-category discretization
led to some difficulty recovering edges whose children had

Figure 2: Comparison of graphs found using BDe (left) and BIC
(right) scores methods. Shown are the top graphs found. Red – correct
edges found by one method and not the other. The arrows in these graphs
only specify direction, not positive or negative interactions.

Figure 3: Graph with influence
scores. Numbers besides the edges
are influence scores from the top
BDe generated graph of Figure 2.

Figure 4: Comparison of number of discretization categories, with hard boundaries. Black – correct edges
in common between all three graphs. Red – correct edges found in only one or two of the graphs. Blue –
incorrect edges. Numbers beside edges are influence scores.

multiple parents, and instead it found incorrect edges from their
grandparents. We believe this occurs because increasingly fine
levels of discretization spreads out the data entered in the CPTs,
such that individual occurrence values are weakened. To
strengthen these values, intuitively, would require more data.

We next compared hard with soft discretization using 3-
categories (Figure 5). Compared with hard discretization, soft
discretization missed edges to genes with 2 parents; only one of the
parents could be found. We conclude that with our simulated data
the 3-category hard discretization works best in allowing recovery
of the simulated genetic pathway. All subsequent analysis below
uses 3-category hard discretization.

Sampling Amount, Intervals, and Coverage: Since sampling
amount, intervals, and
coverage are dependent on
each other, it is not possible
to test their effects on BN
recovery independently.
however, testing their effects,
can be done by multi-
comparisons. First, we
sampled different data
amounts at the same interval,
5, which effectively changes
time coverage across the
simulated output (Figure
6A). Second, we sampled
different data amounts with
the same overall coverage,
10,000 time points, which
effectively this changes the
sampling interval (Figure
6B). Third, we sampled at
different intervals with the
same data amount, 500 data
points, which effectively
changes the overall coverage
(Figure 7). In each case, two
out of three variables change
at the same time. Thus,
when the recovery result is
different between graphs of
the different comparisons
(Figures 6A, 6B, and 7), the
responsible variable is one or

both of the changing variables. To decided with a degree of
confidence which one it is, the common differences between
graphs of two different changing situations (for example the
common edges in first graph of Figure 6A and first of 6B
compared with their differences in the second graph of 6A and
6B) are due to the effect of the common variable that changes in
both. As expected, the more data collected, the better the
recovery of the simulated system (compare within both Figures
6A and 6B). Increased coverage does not appear to significantly
improve recovery (compare within both Figures 6A and 7).
This counterintuitive result, implies that at the coverage across
the simulation is already well represented in our sampling
ranges. Interestingly, when changing the sampling interval,
there appears to be an optimum (interval of ~5) that led to the
best recovery (compare within both Figures 7 and 6B). At
interval of 1 (taking every time point, but with a small coverage
time of 500) fewer correct edges were found. Increasing the
sampling interval to 5, more correct edges were found. But as
the sampling interval increased more (to 10 and 20) incorrect
edges appeared (Figure 7 and 6B), even though in one there is
more coverage (Figure 7). The explanation for these differences
in Figure 7 is that the small sampling interval yields small
coverage, not giving much information between any two points
spread distantly in time, while the large sampling interval,
although it yields large coverage, also loses a large amount of
information between any two points.

In all types of comparisons, it was difficult recover
both edges of genes with multiple parents (genes 0 and 1 to 2;
genes 5 and 6 to 9; and genes 8 and 9 to 10). The main variable
that had the strongest effect on the recovery of edges from both
parents was increasing data amount sampled (compare Figures

Figure 5: Comparison for hard (left) and soft discretization (right). Red
– correct edges found in the top graph by one method and not the other.
Numbers beside edges are influence scores.

Figure 6: Comparison for changes in data amounts and coverage with same intervals (A) or changes in
data amount and intervals with same coverage time (B). From left to right, the number of data points
increases. Top graphs are shown. Numbers beside edges are influence scores. Red – correct edges found in
only one or two graphs. Blue – incorrect edges.

6A, 6B, 7). The type of errors found with large sampling intervals
were not completely erroneous, but were all incorrect edges from

grandparents (Figure 6B and 7). There is also an interval effect
on our influence score, such that the score increased as sampling
intervals increased, until the scores was reduced by the
appearance of incorrect multiple parents at very high sampling
intervals (Figures 6A and 7). The initial increased interval
effect on the influence score makes sense because the magnitude
of the difference in expression of a gene between two time
points increases as the interval increases. We conclude that with
our data set, sampling amount and interval has the largest effect
on BN recovery. There is an optimum interval, which will
depend upon the underlying timing of the gene regulatory
pathway under study.

Biological Sampling and Interpolation of Data Points: In an
actual biological gene expression experiment, the amount of
data collected is much smaller than that used in the above tests.
To mimic the maximum amount of data that could be
reasonably collected in a microarray experiment, we limited the
total number of data points to be from 100 cDNA microarray
slides. With this pre-determined total number, we investigated
the best possible way to allocate the animal samples. For
example, should we sample 100 time points with one animal
each time point or 25 time points with four animals each time
point. For this amount of data, we found that the recovery
results changed with different data sets from repeated
experiments, unlike the bigger data sets above which yielded
quite stable results from repeated experiments. To better
understand this variation, we collected 10 different data sets for
each of these tests, passed each one separately through the BN
algorithms and obtained the average results (Figure 8A). The
edges that appear frequently across the 10 data sets are of

Figure 7: Comparison for sampling intervals. Labeling is the same as is
described in Figure 7 legend. Numbers beside edges are influence scores.

Figure 8: More biologically reasonable sampling with different strategies (A) and performance of interpolating data (B). Shown are the average
top graph results from 10 datasets each. Black dashed edge – only found once in 10 recovery results. Black solid edge – find more than once but less
than 5 times in 10 recovery results. Red solid edge – find more than or equal to 5 times in 10 recovery results. Numbers beside edges – occurrence (left
of slash) and average of influence score (right of slash); these only appear beside the edges found more than once.

greater confidence. Here we used a sampling interval of 5 because
this worked best in our previous tests.
 With this amount of data, only a partial understanding of
the regulatory system was recovered, and many originally
independent genes were incorrectly included the resultant graph
(Figure 8A). As the number of animals increased, there was no
important change until 10 animals per time point in 10 time points.
The number of edges found were dramatically decreased, but for
both correct and incorrect edges. The number genes included in
the graph also decreased, but in this case mostly for those that were
not part of the original regulatory system. Another interesting
result is that most of the incorrect edges revealed (both solid and
dashed lines) had influence scores of 0 (Figure 8A, scores not
shown for dashed lines), and this can be used to eliminate such
edges.
 We tested whether the recovery performance would be
improved by interpolating data points. We kept the sampling
method the same, except for the sampling interval. We increased
the sampling interval, to 20, to have sampling time between points
for interpolation. This resulted in increased coverage, but kept the
number of data sampling amount the same. We linearly
interpolated five data points between every two sampled data
points, resulting in a six-fold increase in the amount of available
data, though only 20% of it corresponds to actual sampled data.
The corresponding results are shown in Figure 8B. Regardless of
the sampling approach, we found that recovery results much
improved compared with the results from the raw data points
without interpolation. The genes in the connected network were
correctly identified and no
independent genes were
implicated. Most of the
correct edges were found
with high occurrence and all
with the correct signs of the
influence score. The
principal missing
connections still involved
nodes with multiple parents.
Some of the incorrect edges
were actually found from a
grandparent, such as from
gene 7 to 2, gene 4 to 9, and
gene 3 to 10. Though
technically incorrect, they

can supply useful
information. We conclude
that when using
biologically reasonable
expression data sampling,
BN inference algorithms
appear to be able to
partially recover the nodes
of the underlying genetic
pathway and their single
parent interactions,
especially when the data is
interpolated. Our BN
inference algorithm
appears to be less good at
recovering multiple
parents per node within the
constraints of biologically

reasonable amounts of data.
 To investigate this more closely, we tested the data
interpolation performance with an even smaller data amount
(Figure 9). Using 50 data points without interpolation, the
recovered genetic system was a mess (Figure 9, left). However,
when using 50 data points with interpolation (Figure 9, middle)
the recovery was much better, even better than that from 100
data points without interpolation (Figure 8A). From 25 data
points without interpolation, the recovery result was too messy
to be shown, but with data interpolation (Figure 9, right), the
recovery is comparable with that from 100 data points without
interpolation. All the results presented in this section are
computed using the BDe score function; when we tried using the
BIC score function, no edges were found, again confirming that
the BIC over-penalizes for over-complexity and that this
excessive penalty is most apparent in the limit of small amounts
of data.

Non-uniformly Sampled Data: Many biological experiments
sample gene expression data in a non-uniform manner. We
tested the effect of non-uniform sampling on BN recovery. Here
the intervals between successive samples is a number chosen at
random between 15 and 25. With a small amount of data, we
found that non-uniform interval datasets can recover part of the
simulated system only when data interpolation was used (Figure
10). The recovery results are comparable with that from
uniformly sampled datasets.

Figure 9: Data interpolation for smaller amounts of data: 50 (middle) and 25 (right) data points compared with
50 uninterpolated data points (left). Labeling is the same as is described in Figure 9 legend.

Figure 10: Recovery results from non-uniformly sampled dataset. Labeling is the same as is described in
Figure 8 legend. The intervals for successive samples were chosen at random between 15 and 25.

Complexity of the Network
The pathway that we simulated has perhaps less complexity than is
likely to be found in biological systems. To test some additional
complexity, we used GeneSimulator to generate data for a pathway
that includes one node with three parents instead of two (gene 2),
as well as two independent genetic pathways (Figure 11, left).

Using our standard conditions of small-data sampling, we were
able to recover most of both independent pathways (not shown).
However, to recover the three parents to one child, we found that
we needed to collect at least 5000 data points (Figure 12, right),
and the recovered edges had very low influence scores (red). We
conclude that BN inference algorithms are able to recover
independent genetic pathways inherent in one data set, but that as
the number of parents per node grows, the amount of expression
data needed to recover the entire network will dramatically grow,
perhaps to an extent that the collection of this data becomes
impractical.

DISCUSSION

In this study, we tested and modified the ability of BN inference
algorithms to recover genetic pathways from simulated gene
expression data. We found that the structure of the underlying
network and the methods used for data processing and sampling
had a critical impact on the ability to recover accurate pathways.
This conclusion is important to consider when using our algorithm
on actual gene expression data, such as that collected using high-
density microarrays.

We found that the best BN inference algorithm for
recovering the simulated genetic pathways was a greedy search
method with random restarts, employing the BDe scoring metric
and being given data discretized using a 3-catergory hard
discretization. In addition, our influence scores were very useful in
determining up or down regulation and the relative magnitude of
regulation. We also found that there was an optimal sampling
interval and efficient amount of data that allowed our BN inference
algorithm to recover the most accurate pathway. We found that the
BIC score does not work as well as the BDe score because the BIC
score yields fewer edges or no edge with biologically reasonable
sampling. This happens because BIC applies a strong penalty for
more complex structure.

One of the key improvements we made to our inference
algorithm for use with gene expression data is the generation of
influence scores. These scores can determine positive or negative
interactions and select against low-scoring incorrect interactions.
This improves the accuracy of the network and increases the
amount of information recovered.

Three-category discretization was optimal for the
simulated dataset we examined. This may seem
counterintuitive, as discretization leads to information loss from
the data: the more coarse the discretization, the more the
information loss. While this is true, it is not however the case
that finer discretization results in better BN recovery. This is
because with more discretization levels, the more CPT values
are spread and also the more BN parameters must be estimated,
and as a result, more data points are needed to confidently
predict edges between nodes. In addition, discretization with
hard boundaries outperformed discretization with soft
boundaries. It is possible that because soft discretization also
spreads out the distribution of the data, some of the BN
relationships are not significant enough under soft discretization
to warrant inclusion of an edge.

Based on the results of this study, we believe the
major limitation in discovering regulatory networks from gene
expression experiments is collecting a sufficient quantity of data
to effectively recover all the interactions in the genetic network,
especially those associated with genes with multiple parents.
Data collection in the context of complex organisms is limited
by the physical constraints of the experimenter and the number
of animals that can be sacrificed for any one given experiment.
Although we found here that our BN inference algorithm will
discover genetic regulatory pathways from biologically
reasonable amounts of data, the generated pathways can be
misleading. Fortunately, interpolation of data from these
smaller samples sizes with good coverage of the simulated gene
expression pathway can at least yield a significant number of
correct genes and their interactions. Moreover, many of the
incorrect interactions found are from grandparents, which at
least places genes only one gene removed from their true
regulator. However, our BN inference algorithm had difficulty
identifying more than one parent for genes with multiple
parents. This is a serious problem for genetic pathway recovery,
as combinatorial regulatory control is a basic property of genetic
pathways. However, the solution to this problem lies in not
attempting to recover complex pathways from limited amounts
of expression data alone. Other types of data can be brought to
bear and, when used in conjunction with expression data, can
significantly enhance the ability to accurately recover regulatory
network structures (Hartemink et al 2002).

Finally, we suspect that the performance of our BN
inference algorithm depends in part on how the networks are
simulated. Though we included noise in generating our
simulated data, the data are clearly not a perfect simulation of
true experimental data; some meaningful biological information
is always lost in mathematical modeling. Future efforts need to
be focused on using more real data to improve how well the
output of the simulator matches real world data. Effort also
needs to be on simulating interaction of genes products within
the same cell versus across cells. As such, the recovery results
produced by our BN inference algorithm are not intended to
serve as a substitute for gene intervention experiments, but
rather as a guide for optimally designing easier to perform
correlational experiments for use with inference algorithms and
to approximate the accurate genetic pathway leading to easier to
test intervention experiements.

ACKNOWLEDGMENTS

Figure 12: A more complex network. The underlying
regulatory network (left) and the recovered one augmented
with influence scores (right).

We thank Kurt Grandis and Derek Scott of Duke University for
assistance in the beginning stage of this project. This research is
supported by a Whitehall Foundation grant to EDJ.

REFERENCES

D’haeseleer, P., Wen, X., Furham, S. and Somogyi, R., Linear

modeling of mRNA expression levels during CNS development
and injury. (1999) Proceeding of the Pacific Symposium on
Biocomputing. 4: 41-52.

Friedman, N., Murphy, K. and Russell, S., Learning the Structure
form Massive Networks. (1998) Proceedings of the Fourteenth
Conference on Uncertainty in Artificial Intelligence. 139-147.

Friedman, N., Nachman, I. and Pe’er, D., Learning Bayesian
Network Structure of Dynamic Probabilistic Network. (1999)
Proceeding of the Fifteenth Conference on Uncertainty in
Artificial Intelligence. 206-215.

Friedman, N., Linial, M., Nachman, I. and Pe’er, D., Using
Bayesian Networks to analyze expression data (2000) Journal
Computational Biology. 7: 601-620.

Goldberg, D. E., Genetic Algorithms in Search, Optimization, and
Machine Learning. (1989) Wesley, MA.

Hartemink, A. J., Gifford, D., Jaakkola, T. and Young, R., Using
Graphical Models and Genomic Expression Data to
Statistically Validate Modeals of Genetic Regulatory
Networks. (2001) Pacific Symposium on Biocomputing.

Hartemink, A. J., Gifford, D., Jakkoola, T. and Young, R.,
Combining location and expression data for principled
discovery of genetic regulatory network models. (2002)
Pacific Symposium on Biocomputing.

Heckerman, D., A Tutorial on Learning with Bayesian Networks.
(1996) Technical Report MSR-TR-95-06, Microsoft
Research, March, 1995 (revised November, 1996).

Jarvis, E. D. and Nottebohm, F., Motor-driven gene expression.
(1997) Proceedings of National Academy of Sciences of the
United States of America.

Jarvis, E. D. et al, Integrate Songbird Brain.(2002) Journal of
Comparative Physiology, A (in press).

Murphy, K. and Mian, S., Modeling Gene Expression Data Using
Dynamic Bayesian Networks. (1999) Technical Report,
University of California, Berkeley.

Smith, V. A., Jarvis, E. D. and Hartemink, A. J., Evaluating
Functional Network Inference Using Simulations of Complex
Biological Systems. (2002) Accepted by The 10th international
conference on Intelligent Systems for Molecular Biology.

Smith, V. A., Jarvis, E. D. and Hartemink, A. J., Influence Of
Network Topology and Data Collection On Functional
Network Influence. (2002) Pacific Symposium on
Biocomputing (in press).

Somogyi, R. and Sniegoski, C. A., Modeling the complexity of
genetic networks: understanding multigenic and pleiotropic
regulation. (1996) Complexity. 1:45-63.

Weaver, D. C., Workman, C. T. and Stormo, G. D., Modeling
regulatory networks with weight matrics. (1999) Proceedings
of the Pacific Symposium on Biocomputing. 4: 112-123.

