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Abstract

Flocks of brown-headed cowbirds, Molothrus ater, self-
organize social environments, which have strong impacts on
social learning and behavior. To understand the rules underly-
ing self-organization of the social environment, I develop an
agent-based model of cowbird social association and evolve
it to match observed patterns of association measured from
real birds. The behavioral rules evolved in the model provide
insight into the type of rules real birds use to organize their
social environment. The evolved models successfully pre-
dicted both association patterns and additional related move-
ment variables measured from a new flock of birds.

Introduction
Animal behavior often occurs embedded within the complex
system of a group of interacting animals; however, tradi-
tional methods for elucidating behavioral rules include re-
ductionist techniques that can destroy the very social en-
vironment necessary for the behavior of interest (Schank,
2001). Within the last decade, studying animal behavior
within its natural, complex context has been enabled through
use of agent-based models (Schank and Alberts, 1997; Pow-
ell et al., 1999; Schank and Alberts, 2000; Jackson et al.,
2004; Bryson et al., 2007; Sellers et al., 2007). These mod-
els typically implement hypotheses about how individual an-
imals move, make decisions, etc., and are then evaluated
for ability to match emergent properties of situations they
model, such as breeding productivity (Powell et al., 1999)
or group decision making (Sellers et al., 2007). But this
human-designed model building leaves open the possibil-
ity that other, non-considered scenarios could also match the
observed behavior (Bryson et al., 2007). Schank and Alberts
(2000) pioneered a method to address this issue: allowing
heuristic search to optimize parameters of an agent-based
model, thus reducing bias from pre-conceived notions. Here,
I take this approach, developing an agent-based model, and
evolving it with a genetic algorithm (GA), to elucidate gen-
eral principles underlying behavioral rules used in social as-
sortment of brown-headed cowbirds, Molothrus ater.

The brown-headed cowbird is an obligate brood parasite:
females lay their eggs in the nests of other species, leav-

ing the host species to raise their young. Because of this
behavior, cowbirds were long thought to be exemplars of
instinctual control of all aspects of social behavior, and in
particular, mating behavior (Mayr, 1974). However, modern
research revealed that cowbirds rely heavily on social learn-
ing for social interactions, including mating preferences and
appropriate courtship behavior (King and West, 1989; Free-
berg et al., 1995). This learning occurs when adult and juve-
nile cowbirds gather in large over-winter flocks (Friedmann,
1929; King and West, 1988).

These over-winter flocks have recently been shown to
have strong self-organized patterns of social association
based on age and sex (Smith et al., 2002). Furthermore, the
make-up of the social environment surrounding a juvenile
male within this self-organized pattern correlates with his
singing behavior and courtship success (Smith, 2001; Smith
et al., 2002), and experimentally induced differences in so-
cial environment in a flock can radically adjust many as-
pects of birds’ future social and mating behavior (King et al.,
2002; West et al., 2002; White et al., 2002a,b,c). Thus, the
self-organized social environment provides the scaffold sur-
rounding social learning in this brood-parasitic species.

However, the mechanism behind this self-organization is
unclear: it must be assumed some preferential approach or
avoidance occurs, but features such as specificity of prefer-
ence and if all birds, or only some ages/sexes, drive the pat-
terns, is unknown. To investigate mechanisms underlying
such self-organization, I develop an agent-based model of
cowbird social association, using a modified classifier sys-
tem where movement is controlled by a set of interpretable
rules. I evolve this model to match the self-organized as-
sociation patterns seen in one group of birds, then use the
evolved models to predict association patterns as well as
other movement variables from a new group of birds.1

Agent-Based Model
Because the aim of this work is to gain insight into rules
birds use to self-organize their social environment, I chose
to model individual cowbirds as modified classifier systems

1Model and GA created in C++ and available upon request.
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(Holland et al., 1986; Booker et al., 1989). The if-then state-
ments in the classifier are easily interpretable as choices
made by a bird about its future behavior based on its current
environment. The traditional classifier system was modified
in two major ways for this agent-based model: (1) choice of
classifiers was performed probabilistically based on strength
to simulate the stochastic nature of animal behavior and (2)
learning did not occur through reinforcement nor evolution
of an individual agent’s classifiers; instead, all parameters
of the model controlling bird behavior, including classifiers,
were evolved with a GA based on association patterns re-
sulting from the interaction of multiple agents.

A model was characterized by the number of bird-agents
of each of four possible age and sex classes (AM: adult male,
JM: juvenile male, AF: adult female, JF: juvenile female)
and model parameters controlling the behavior of each class.

Model Parameters

Two activity-state probabilities controlled probability of a
bird becoming (1) active if inactive and (2) inactive if ac-
tive. Only active birds moved in relation to their environ-
ment. This distinction allows modeling of situations where
birds may be unresponsive to social environment, for exam-
ple sheltering from weather or predators (Smith, 2001).

A list of classifiers governed each birds’ behavior: when
the environment matched conditions described by all five
bits of an if-statement, the five bits of its then-statement di-
rected a potential behavior (Table 1). The if-statement re-
lates to the social environment: a bird was aware of neigh-
boring birds if they were within 15 units; neighbors were
near if within 5 units and far otherwise; neighbors’ age and
sex was noted; and if this neighbor had the same relationship
in the last time step (old) or not (new). Eighteen distinct en-
vironmental conditions are thus represented; wild-cards in
the if-statement enable a classifier to apply to multiple con-
ditions. The near and aware distances mimic distances rele-
vant to cowbirds: cowbird song degrades rapidly beyond 0.3
m (King et al., 1981), making it a socially relevant “near”
distance (Smith et al., 2002); birds engage in social interac-
tions from as far as 0.9 m, and social companions within this
distance influence social learning (Smith, 2001).

The then-statement relates to birds’ movement choices:
whether to move or be still; if moving, to move in a directed
manner related to a neighboring bird or randomly; and if
moving directed, to move towards or away from the other
bird. Additionally, two bits adjusted the overall activity state
of a bird, making it active or inactive.

Finally, each classifier had an integer strength S which
influenced the probability of its being chosen to perform.

These model parameters are what is evolved by the GA
based on assortment patterns arising from individual agent-
birds executing repeated classifier system cycles.

Bit Interpretation of Value
If 1 (on) 0 (off)

neighbor aware of bird no birds
distance near far

age adult juvenile
sex female male
time new old
Then 1 (on) 0 (off)
move move do not move

directed move in relation to bird move randomly
to move toward move away

inactive become inactive no change
active become active no change

Table 1: Interpretation of possible values in classifier state-
ments. The if-statement could also include wildcards, which
would match conditions corresponding to either value.

Classifier System Cycle
The agent-based model runs by each individual bird go-
ing through a classifier system cycle, consisting of: detect,
match, select, and effect. Birds are modeled in an 90x90 unit
artificial world; each bird is identified with its age (adult
or juvenile) and sex (male or female), and a unique num-
ber. Before each cycle, each bird determines its activity-state
based on its activity-state probabilities. All birds go through
the cycle whether or not they are active.

Detect. Each bird populates a message board with mes-
sages in the same format as the if-statement of classifiers. A
message is produced for every bird within its awareness dis-
tance, noting distance, age, and sex. The message is flagged
with the neighbor’s identifying number and compared to a
list of messages from the previous time step: if identical con-
ditions for this neighbor exist, the message is set as old; oth-
erwise, new. If no other birds are in the individual’s aware-
ness distance, a single “no bird” message is produced, with
wildcards in the distance, age, and sex bits, and the time bit
reflecting whether lack of neighbors is new or old.

Match. Every message is compared to the if-statement of
the bird’s classifiers, and added to a matched set if all non-
wildcard bits are identical. Classifiers in the matched set are
flagged with the identity of neighboring birds; a classifier
may be added to the matched set multiple times for different
neighboring birds. If no classifiers match the message(s) on
the message board, the matched set is empty.

Select. One classifier from the matched set is selected to
perform; a classifier’s probability of being chosen is equal
to its strength’s proportion of the total strength extant in the
matched set. The classifiers in the matched set are ordered
arbitrarily and contiguously assigned spans of integers equal

Artificial Life XI 2008  562 



in size to their strengths; i.e., classifier c with strength Sc>0
is assigned integers {Ac1, . . . , AcSc}, where:

Ac1 = 1 +
c−1∑

n=1

Sn

AcSc = Sc +
c−1∑

n=1

Sn

If Sc=0, the classifier is assigned no integers. One classifier
is selected when a random integer, chosen between 1 and
the sum of all strengths in the matched set, falls within its
assigned span. If the matched set is empty, a null classifier
is passed to the next stage.

Effect. From the then-statement of the chosen classifier, a
bird first determines any changes to its activity-state due to
the active- and inactive-bits. The inactive-bit is processed
first, such that the active-bit can “mask” the inactive-bit.

Birds that are inactive, have a null classifier, or an
off movement-bit remain still. Active birds with an on
movement-bit analyze the remainder of the classifier: if the
directed-bit is off, they move 4 units in a random direction;
if it is on, they move 4 units toward (on to-bit) or away (off
to-bit) from the neighboring bird flagged on that classifier. If
a “no bird” classifier has a flagged directed-bit, movement is
in a random direction. If movement would take a bird out of
the 90x90 world, they are stopped on the outside boundary.

Running the Agent-Based Model
A run of the agent-based model begins by creating the ap-
propriate number of bird-agents of each of the four age and
sex classes; each bird receives parameters specific to its age
and sex. Birds are placed randomly in the 90x90 world, and
50 classifier system cycles are run to allow the birds to de-
velop assortment. A further 300 classifier system cycles are
run while the GA collects the data for its fitness function.

Genetic Algorithm
The GA evolves populations of agent-based models, stor-
ing parameters necessary to define a model in five chromo-
somes: one contains activity-state probabilities for all four
age and sex classes; the remaining four contain the list of
classifiers specific to each age and sex. Each classifier is
stored as: 5 if-bits, 5 wild-bits which when on, make the
corresponding if-bit wild, 5 then-bits, then a strength.

Fitness Evaluation
Model fitness is estimated as an average calculated from 200
runs (repetitions determined by power analysis). Fitness is
based on match of association patterns to an ideal pattern,
defined by proportions of near neighbor points (PNN) for
each age and sex class with all others. PNNIJ of class
I with class J is calculated as in behavioral experiments

(Smith et al., 2002; White et al., 2002b) using points per
bird (NNiJ ) as counts of near neighbor observations of bird
i with bird j (NNij) normalized to size of class J (subtract-
ing self when normalizing with own class):

NNiJ =
∑

j∈J NNij

|J\{i}|

PNNIJ =
∑

i∈I (NNiJ/
∑

K NNiK)
|I| , K∈{AM, JM, AF, JF}

The NNij values are collected from the last 300 classifier
system cycles of each model run: NNij is increased by 1
after every cycle for which bird j is near (within 5 units of)
bird i. Fitness F of a model run is then calculated as:

F = 16−
∑

I

∑

J






(
PNNideal

IJ −PNNmeasured
IJ

PNNideal
IJ

)2
, PNNideal

IJ > 0

(
PNNmeasured

IJ

)2
, PNNideal

IJ = 0

Evolution Process
A generation starts with 10 seed models, representing the 10
models with the highest fitness last generation, and 5 new
random models (to maintain variation in the population). In
the initial generation, the 10 seed models are also randomly
generated. For random generation, values are chosen be-
tween: 0-1 for the 8 activity-state probabilities; 1-6 classi-
fiers for each age and sex class; on/off for the 15 bits in each
classifier; and integers 0-50 for each strength.

Each generation the 10 seed models mate to produce
35 offspring (see modification later). A mating produces
one offspring from two models, each randomly assigned
to be mother or father. Crossover occurs for each chro-
mosome with a probability of 0.5 (otherwise, offspring re-
ceive mothers’ chromosomes). In probability chromosomes,
a crossover probability is chosen: the offspring receives the
father’s chromosome up to and including that probability
and the mother’s thereafter. In classifier chromosomes, a
crossover classifier from both the mother and father and a
crossover point within the classifier is chosen: the offspring
receives the father’s list of classifiers up to and including
the crossover point in the chosen father’s classifier and the
mother’s list after that point in her chosen classifier and
thereafter. The offspring’s list is truncated to 6 classifiers,
to prevent overgrowth of classifier lists which was other-
wise rampant. After crossover, point mutations occurr at
each chromosome element with probability 0.01: probabil-
ities add or subtract a value 0-0.2; classifier bits flip state;
classifier strengths add or subtract an integer 0-3.

The 10 highest fitness models are chosen to seed the next
generation. The GA is run for 40-50 generations.

Evolving the Agent-Based Model
Initial verification
Before evolving models to match movement patterns of real
birds, models were evolved to a test situation of total own-
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Figure 1: Fitness of best model for 12 runs of GA at each
generation (lines) and change in fitness averaged every four
generations (dots).

class association, i.e., PNNIJ = 1 for I = J and 0 other-
wise, in order to investigate behavior of the GA and model.
Models were set up with 10 members of each age and sex
class, and the GA was run 12 times to produce 12 models.

Genetic algorithm performance. The GA succeeded
in increasing fitness of the models from their ini-
tial random starting points (Fig.1), reaching fitness
mean=15.7±SE=0.06 of maximum 16. The average change
in fitness each generation was significantly positive ev-
ery four generations through generation 45 (t9-11≥3.4,
P≤0.007), and not thereafter (t5=1.9, P=0.12).

Evolved model performance. Evolved models showed
desired assortment patterns, with birds gathering in small
clumps of same age and sex class (Fig.2a,b). Perfect total
assortment was not achieved, but evolved models reached
about 0.8 PNN for own class and near 0 for others (Fig.2c).

Analysis of evolved parameters. To examine how evolu-
tion affected the models, evolved parameters were evaluated
for their deviation from randomness.

There was no evidence of either directional selec-
tion on activity probabilities P (|t47|≤0.2, P≥0.8, one
sample t-test H0=E(P )=0.5) or stabilizing selection for
values of 0.5 (|t47|≤0.8, P≥0.5, one sample t-test
H0=E(|P−0.5|)=0.25). However, the active-bit in the clas-
sifier was significantly more often on (χ2

1=23.2, P<0.0001).
When not masked by an on active-bit, the inactive-bit was
more often off (χ2

1=31.8, P<0.0001); when masked, there
was no difference (χ2

1=1.5, P=0.2).
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Figure 2: Evolution for total assortment. (a) Initial random
placement of birds in world; (b) assortment at end of run fol-
lowing evolved rules. (c) PNN averaged over all 12 evolved
models. Error bars represent standard error of the mean.

All bits in the remainder of the then-statement showed
evidence of selection: the move-bit and directed-bit more
often on (χ2

1≥33.6, P<0.0001), and movements more often
toward the other bird (χ2

1=7.5, P=0.006).
In the if-statement, all bits were more often wild than not

(χ2
1≥9.7, P≤0.002). When not masked by a wild, the time-

bit was more often set to old (χ2
1=10.4, P=0.001); the age-bit

to juveniles (χ2
1=4.1, P=0.04); and there was no difference

in the rest (χ2
1≤3.4, P≥0.07).

In order to determine if different strategies had evolved for
remaining near one’s class, classifier lists were divided into
two groups: those which contain classifiers directing a move
toward a neighbor of the same class in (1) more than half or
(2) less than half of possible environmental conditions con-
taining such a bird. Classifier lists in the second group more
often simply had no classifiers at all that could respond to the
same class (Mann-Whitney UN=19,29=76, P<0.0001), sug-
gesting that the different behaviors were due to evolutionary
constraints rather than different strategies.

Evolution to match real bird behavior
The agent-based models were evolved to match association
patterns measured from real birds in Smith et al. (2002) dur-
ing a subset of the Spring sample (22 Mar - 14 Apr); this
consists of PNN for birds within 0.3 m and shows the typical
stair-step pattern of increasing association with birds similar
first in sex then age (Fig.3). The models were set up with 19
AM, 14 JM, 21 AF, and 16 JF to match age and sex distri-
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Figure 3: Association pattern from real birds used to evolve
models (bars); association patterns from each of five evolved
models, averaged over 100 runs (circles).

bution of the study. The basic GA was modified in response
to initial tests’ indication that constraints may be limiting
evolution. The 5 new random models each generation may
be too poor to contribute useful variation; thus the random
models were mated to the 10 seed models to produce 10
of the 35 offspring, providing a mixture of proven and new
elements. Five models were evolved to 49-52 generations.
They successfully matched the desired PNN pattern (Fig.3)
and averaged fitness 15.6±0.02, comparable to initial tests.

Interpretation of evolved models. As with the initial
tests, the models showed neither directional nor stabilizing
selection of activity parameters (|t19|≤0.2, P≥0.8), but did
show selection for on active-bits (χ2

1=6.5, P=0.01). There
was less evidence of selection in the remainder of the classi-
fiers, with only neighbor, sex, and time-bits more often wild
in the if-statement (χ2

1≥4.3, P≤0.04), and move-bits more
often on in the then-statement (χ2

1=30, P<0.0001). This
makes sense, as the behavior evolved for is not so directional
nor easily defined as in the initial test. Rather than looking
at individual bits across all classifiers, it is more instructive
to examine the overall behavior produced.

In general, the evolved rules designated behaviors that in-
creased chances of NN with birds of both ages of the same
sex: such behaviors were moving towards or remaining still
in response to the other bird (27% of all classifiers; 94% of
those applicable to such situations, χ2

1=24, P<0.0001). Be-
haviors which decreased chances of NN with opposite sex
birds (moving away or randomly) showed a non-significant
trend to be more common than behaviors increasing chances
(20% all; 67% applicable, χ2

1=3.6, P=0.06). Behaviors in-
creasing or decreasing chances of NN with both same age
and opposite age birds were present in approximately equal
numbers (χ2

1≤0.2, P>0.6). Classifiers which responded to
any bird, regardless of age and sex, were rare; most classi-
fiers were specific to at least age or sex (87% of all classi-
fiers, χ2

1=59, P<0.0001), but rarely to both (27%, χ2
1=23,

P<0.0001). No model ever evolved a class with specific

rules in response each age and sex: all classifier sets in-
cluded generalities. With one exception (JM in Run 1), all
models evolved age and sex-based behaviors for all classes.
All models evolved some classifiers which went against the
overall pattern, for example, in one model juvenile males re-
mained still in response to adults and moved randomly in re-
sponse to juveniles. Thus, the rules evolved by the classifiers
were characterized by a combination of partially specific re-
sponses; these tended to increase proximity to the same sex,
decrease proximity to the opposite sex, and had mixed re-
sponses to different ages.

Evaluation of Evolved Models on New Data
The five evolved models were evaluated for their ability
to predict association patterns plus additional behaviors not
used for fitness evaluation – approach, response, and flight –
in a new group of birds. These birds are the same as the JA
condition in White et al. (2002b); I refer the reader to this
publication for details of bird capture, housing, etc.

Behavioral data collection
Association patterns. I used near neighbor data collected
by Dr Andrew King and Dr David White as part of White
et al. (2002b); I calculated PNN for birds within 0.3 m for
data collected between 13 Mar - 10 Apr, matching as close
as possible the period for which the models were evolved.

Behavior samples. During the same time period, I col-
lected behavioral focal samples: morning (0815-1145 hr)
and afternoon (1215-1600 hr) 10 min focal samples on each
bird every week for the four weeks, totaling 33.3 hrs obser-
vation. Observations were carried out in groups 3-5 times a
week, and order of observation balanced across weeks.

During a focal sample, the following behaviors were
recorded: approach (moving from a further distance to 0.3
m of another bird), response to approach (leave: moving
further than 0.3 m from approaching bird; stay: remaining
within 0.3 m), flight (take to the air by flapping wings), and
landing environment (near: within 0.3 m of another bird;
aware: within 0.9 m of another bird; alone: more than 0.9
m from any bird). Identity of other birds involved in these
behaviors was noted. Note that these are not mutually ex-
clusive behaviors: e.g., flights can also be approaches.

Comparison to models.
Data from models. Each evolved model was set up with 5
AM, 8 JM, 7 AF, and 5 JF, to match the make-up of the new
group of birds. The same data as above was collected from
100 runs of each model, with the following conversions for
the simulated world: near and aware distances were 5 and
15 units respectively; when a movement resulted in being
within 5 units of another bird which had also moved that
time step, it was only scored as approach if the movement
was orientated <90◦ either side of the other bird’s original
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location (i.e., an approach cannot be scored if moving away);
and all movements were regarded as flights.

Comparison values. From each data set (real and mod-
els), 60 comparison values were calculated: 16 PNN among
all age and sex classes; 16 proportion approach (PAP) val-
ues, calculated for all age and sex classes in the same manner
as PNN, except using counts of approach (APij) of bird i
to j rather than near neighbor (NNij) observations; 16 pro-
portion leave (PLE) values, calculated from counts of bird i
responding with a leave (LEij) to bird j’s approach (APji):

LEiJ =
∑

j∈J LEij∑
j∈J APji

PLEIJ =
∑

i∈I LEiJ

|I|
and 12 proportion flight landing (PFL) values calculated
from counts of bird i’s flights (Fi) and landing environments
E (LiE):

PFLIE =
∑

i∈I(LiE/Fi)
|I|

Evaluation of model fit. Comparison values VR from the
real birds were compared to the distribution of 100 values
VM from each evolved model, to determine the fit of the
model: if a two-tailed probability of the real value being
drawn from that distribution (calculated directly as twice the
proportion of VM as extreme or more so than VR) was less
than α=0.05, the model was considered to not be a good
approximation for that value.

The models showed themselves to be good fits to PNN,
PAP, and PLE values, but not PFL values (Fig.4). For
the first three value types, the model distributions were gen-
erally centered around corresponding VR values, while for
PFL the VR values were in the tail of the distributions
(Fig.4a,b). Correspondingly, over half of real PFL values
were significantly different from the model, while very few
of the other value types were (Fig.4c).

Discussion
An agent-based model of bird behavior was created and suc-
cessfully evolved using a genetic algorithm to produce de-
sired emergent properties of the system: association patterns
of a group of birds. An initial test verified performance of
the GA, which was subsequently used to evolve models to
match association patterns measured from real birds. The
evolved models matched not only association patterns from
the situation for which they were evolved, but association
patterns collected from a new set of birds. Additionally, they
matched patterns of approach and response of the new birds,
behaviors for which they were not directly evolved.

The initial test evolved for total assortment showed that
the classifier system-based model was an appropriate choice
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Figure 4: Fit of models to real data. (a) Example match
of one evolved model’s VM distributions to real values for
well matching (PAP) and poor matching (PFL) values. (b)
Location of real values relative to model distribution shown
by median number of standard deviations between VR and
mean VM . (c) Proportion of VR significantly different from
model distribution. For b,c: mean across 5 evolved models
shown; error bars represent standard error of the mean.

for modeling behavioral rules. The evolved rules were
straight-forward and easy to interpret. The activity proba-
bility chromosomes appeared to have little impact, with the
classifiers themselves controlling activity state; overall, it
was more beneficial to be active, and thus able to respond to
the environment. The classifiers evolved for directed move-
ment towards other birds. It is possible that moving toward
was favored over moving away as the movement distance
was somewhat less than the near distance: moving away
may not avoid an NN point next time step, whereas moving
towards always maintained one. Classifiers made strong use
of wildcards in the if-statement, allowing behavioral rules to
apply to multiple conditions. When not wild, old conditions
were more often coded for: this is sensible, as a condition
still there from the previous time step may be more likely to
remain, and thus be more useful to respond to. Any reason
for the bias towards responding to juveniles is unclear; as
this comparison was considerably less strong than all oth-
ers, it is likely that it represents random variation. It is easy
to see how rules coding for moving in response to the en-
vironment, particularly reoccurring conditions, and in a di-
rected manner could create a strong pattern of association
with similar birds. Also, when evolving for total association
with only one class, use of wildcards enables birds to more
efficiently respond to multiple conditions similarly.

There was no evidence of evolution of multiple strategies
for achieving total assortment; instead, it appears evolution-
ary constraints were responsible for different responses to
a bird’s own class, in particular, never evolving applicable
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classifiers. Thus, when evolving to match patterns of real
birds, more variation was introduced by mating randomly
generated models with the fittest ones.

The models evolved to real bird behavior success-
fully matched the association patterns for which they
were evolved; this indicates these patterns do not require
individual-based responses and can be produced using only
age and sex-based rules. The models also matched associa-
tion patterns of an entirely different group of birds, having a
different age and sex distribution; this indicates the evolved
association pattern is not tied to age and sex distribution, but
is due entirely to the behavioral rules. Thus, these rules are
generalizable beyond a particular model to other groups of
birds, and so can provide insight into general principles un-
derlying production of self-organized association.

By examining the five evolved models, we can postulate
the following about behavioral rules of real birds. First,
being able to become active in relation to the environment
is key to production of self-organized behavior. Second,
instead of requiring specific responses to all age and sex
classes, general rules applicable across broad classes of
birds (e.g., avoid males, be attracted to juveniles) can lead to
assortment. Third, it is likely that all age and sex classes are
actively involved in assortment: this is not only supported by
repeated emergence in evolved models, but also by match of
the models with other movements of real birds. Finally, ex-
istence of rules counter to the general pattern indicates that
such rules can co-exist with assortment. This is particularly
encouraging, as it is known that interaction of juvenile males
with adult females–complete opposite classes–is highly im-
portant to social development of the juveniles (Smith et al.,
2000; Smith, 2001; Smith et al., 2002). The models show
that self-organized patterns of association can be maintained
even with attraction between different classes of birds.

The above inferences could be tested by future behavioral
or computer experiments. For example, behavioral choice
tests could characterize attraction/avoidance to age and sex
classes; observation could track birds’ activity-states; sim-
ulations could be designed to match measured activity pro-
portions but disallow response to environment, or only allow
1-2 classes to behave preferentially, and these simulations’
effectiveness compared to the current model.

The evolved models were not only successful at predict-
ing association patterns of a new group of birds; they also
predicted other behaviors not included in the fitness func-
tion. In particular, the models were good fits for observed
patterns of approaching other birds and the response to such
approaches. These behaviors are key contributors to the self-
organized association pattern; attraction and repulsion be-
tween birds is what drives with whom they associate. Thus,
in evolving models to match a particular association pattern,
I succeeded in creating models which match the mechanism
producing these patterns. This success indicates the appro-
priateness of the formulation of the behavioral model and

thus provides confidence for the generalizations to real birds.
Another type of behavior not included in the fitness func-

tion, proportion of flights to different proximities of other
birds, was not well matched by the models. However, these
flight behaviors are not contributors to association patterns:
birds can land near other birds often or rarely, and maintain
the same association pattern, as long as they approach par-
ticular classes in the same proportion. Thus, this behavior
was independent of the criteria used for evolving the models.
Additionally, the formulation of the model did not well re-
flect the range of potential flight behaviors: the model birds
always moved a fixed distance, while real birds make flights
of varying distances. This difference did not strongly im-
pact association patterns: a flight of long distance when ap-
proaching or leaving could be approximated by several suc-
cessive flights. However, this difference made certain types
of flights, particularly to alone, less likely in the model.

That the models were successful at predicting association
patterns for which they were evolved, as well as contribut-
ing behaviors, but not behaviors which could vary indepen-
dently of association pattern, highlights both the limitations
and strengths of this modeling approach. The models were
designed with the intent of understanding rules underlying
self-organized assortment. As such, they included parame-
ters relating intuitively to such rules: behavior in response
to neighboring birds. They were not designed to model pat-
terns of flight behavior, and included no parameters for ad-
justing flight distance. When evolved to match association
patterns, there was no reason for the independently vary-
ing flight behavior to have an impact, and the models did
not accurately reflect these behaviors. However, the models
were highly successful at the task for which they were de-
signed: matching association patterns, predicting the behav-
iors which create these patterns, and thus providing insight
into the mechanism behind self-organized social association.

The model is clearly a simplification of bird behavior,
even in behaviors related to association patterns. Real birds
exhibit behaviors related not only to age and sex of other
birds, but to individuals; for example, birds exhibit con-
sistent individual differences in their association behavior
(Smith, 2001; Smith et al., 2002), and even “friendships”
(spending large amounts of time with a specific individual).
This model does not capture such individualized behaviors.
Modeling individual differences, and allowing individual-
specific behaviors, is an area of future investigation. It
would be interesting to see if consistent patterns of individ-
ual difference emerged across evolved models, and thus per-
haps be relevant to self-organization of association patterns.

Another potential area of future investigation corresponds
well with the modeling framework used, classifier systems.
Implementing learning of classifiers on an individual-agent
basis could allow investigation of learning trajectories. For
example, female feedback on singing behavior of males
could be modeled, either on top of or distinct from the cur-
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rent assortment model. Such a model could address whether
the known JM-AF interactions are driven by males’ learning
or also require female attraction.

This work has shown that it is possible to use agent-based
models as a tool to help understand animal behavior. With
a question, what rules do birds use to produce their self-
organized association pattern, and a model designed to pro-
vide intuitive answers, I was able to make inferences about
the behavior of real birds. The use of a heuristic search
method, the GA, moved the modeling exercise from one of
validating a single hypothesized set of rules to one where
I probed general principles of behavior. The five evolved
models all had a different rules, and all successfully matched
bird behavior, showing that there are many possibilities for
the rule set. However, while it is not possible to say precisely
what behavioral rules the birds use, the five evolved mod-
els provide independently generated hypotheses about such
rules; thus, similarities across them point towards general
principles that are likely to be true of any set of behaviors
able to produce the desired association patterns, including
those used by real birds. In sum, combining evolutionary al-
gorithms with agent-based modeling can become a valuable
tool, enabling study of animal behavior within the complex
environments in which it naturally occurs.
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Errata
p.564, column 2, paragraph 2, sentence 1 should read:

In the if-statement, age and sex were more often not wild
and all other bits more often wild (χ2

1≥9.7, P≤0.002).

p.565, column 1, paragraph 2, sentence 2 should read:
There was less evidence of selection in the remainder

of the classifiers, with only neighbor, sex, and time-bits
showing selection in the if-statement (χ2

1≥4.3, P≤0.04),
and move-bits more often on in the then-statement (χ2

1=30,
P<0.0001).


	Smith_ALIFExi08_561-568
	Errata

