
Ecology, 91(7), 2010, pp. 1892–1899
! 2010 by the Ecological Society of America

Revealing ecological networks using Bayesian network
inference algorithms

ISOBEL MILNS,1 COLIN M. BEALE,2,3,4,5 AND V. ANNE SMITH
1,6

1School of Biology, University of St Andrews, St Andrews, Fife KY16 9TH United Kingdom
2The Macaulay Institute, Cragiebuckler, Aberdeen AB15 8QH United Kingdom

3Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ United Kingdom
4Centre for Biodiversity Research, 6270 University Boulevard, University of British Columbia, Vancouver V6T1Z4 Canada

5Department of Biology (Area 18), P.O. Box 373, University of York, York YO10 5YW United Kingdom

Abstract. Understanding functional relationships within ecological networks can help
reveal keys to ecosystem stability or fragility. Revealing these relationships is complicated by
the difficulties of isolating variables or performing experimental manipulations within a
natural ecosystem, and thus inferences are often made by matching models to observational
data. Such models, however, require assumptions—or detailed measurements—of parameters
such as birth and death rate, encounter frequency, territorial exclusion, and predation success.
Here, we evaluate the use of a Bayesian network inference algorithm, which can reveal
ecological networks based upon species and habitat abundance alone. We test the algorithm’s
performance and applicability on observational data of avian communities and habitat in the
Peak District National Park, United Kingdom. The resulting networks correctly reveal known
relationships among habitat types and known interspecific relationships. In addition, the
networks produced novel insights into ecosystem structure and identified key species with high
connectivity. Thus, Bayesian networks show potential for becoming a valuable tool in
ecosystem analysis.
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INTRODUCTION

The complexity of real ecosystems is staggering
(Hutchinson 1959): over 1000 species of beetle alone
live on a single Panamanian tree species, all of which
may interact in many ways, from competition and
predation, to facilitation and mutualism (Erwin 1982).
For such complex systems, untangling interactions and
relationships between species may seem a lost cause.
However, in our changing world, understanding ecosys-
tem stability and fragility is of growing importance—yet
to do so we must understand the networks that form the
systems (Dunne et al. 2002, Montoya and Sole 2002). If,
for example, we want to understand how species will
respond to climate change, we need to improve the
current methods of identifying climate associations to
incorporate functional relationships between species
(Davis et al. 1998, Pearson and Dawson 2003).
Similarly, to understand how a biological control agent
may have non-target effects, or knock-on effects of
chemical control methods on populations of beneficial
insects, we need to identify interactions that exist within
the ecosystem (Cohen et al. 1994, Henneman and

Memmott 2001). However, revealing networks of
relationships within an ecosystem is complicated (Proulx
et al. 2005).
To discover information about complex ecological

systems efficiently, tools for inferring structure of
networks from field data are needed. Previously in
ecology this has either meant extraordinarily detailed
fieldwork, such as total counts of parasitism events or
behavioral observations of competition/facilitation
(Memmott et al. 2000a, b, Proulx et al. 2005); identifi-
cation of simple relationships between species and
habitats through use of classical statistical methods
(Guisan and Thuiller 2005, Knight and Beale 2005,
Osborne et al. 2007), or more sophisticated modeling of
small systems with limited diversity (Krivtsov 2004,
Moya-Larano and Wise 2007). Recently, an approach
has arisen in biology that is capable of inferring network
structures, capturing nonlinear, stochastic, and arbitrary
combinatoric relationships: discrete Bayesian networks
(BNs; Heckerman et al. 1995). These ‘‘Bayesian network
inference algorithms’’ have been applied to reveal gene
regulatory networks using gene microarray data (Fried-
man 2004). Most recently BNs were transferred to a new
biological system and shown to reveal known pathways
of neural information flow networks from brain
electrophysiology data, out-performing previous regres-
sion-based methods (Smith et al. 2006). Such a flexible
tool capable of identifying the complex relationships
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involved in gene and neuronal regulation potentially
offers a valuable new method for recovery of ecological
networks.
Here, we evaluate the potential usefulness of BN

algorithms for ecological data: we apply BN inference to
avian count and habitat data collected from the Peak
District National Park, UK. We examine properties of
the revealed networks and evaluate them against known
features of this ecosystem. In particular, within the Peak
District population, we expect many relationships of
upland birds with habitat, especially altitude; we expect
strong links between Red Grouse and common heather
(Pearce-Higgins and Grant 2006); and we expect raptor
species to be related positively with their prey species
(Sih 2005).

METHODS

Data sets.—We used bird observation data, available
at a 100-m scale, from surveys of the Peak District
National Park (Appendix A: Fig. A1) in 1990 and 2004
(Stillman and Brown 1994, Carr and Middleton 2004,
Pearce-Higgins et al. 2006). We excluded birds migrat-
ing over the area and birds with single records, leaving
37 upland bird species. Eight species were present in
2004 but not 1990. We additionally used satellite derived
environmental variables, also available at 100-m scale:
three geographical variables (altitude [m], slope [de-
grees], and path distribution) and six vegetative vari-
ables (vegetation height plus percent cover of burned
and unburned heather [Calluna vulgaris], grass [Molinia,
Nardus, and fine-leaved grass species], cotton grass
[Eriophorum spp.], and non-heather dwarf shrub [Vacci-
nium myrtillus and Empetrum nigrum; Pearce-Higgins et
al. 2006]). See Appendix A for further details of the data
used. The 100-m2 resolution of both bird counts and
habitat data were aggregated to create data sets on four
spatial scales: 0.5 km, 1 km, 2 km, and 5 km.
Bayesian network inference algorithm.—The BN anal-

ysis was performed using Banjo v1.0.5, a publicly
available BN algorithm (available online)7. We refer
the reader to Appendix B for a general overview of BNs
and Banjo. Briefly, a BN represents statistical depen-
dence between variables (here, species and habitats) by
links in the network. BNs preferentially show direct
links, not indirect links (i.e., mediated through other
measured variables; Heckerman et al. 1995). Banjo uses
heuristic search to identify high scoring networks based
on a BSM (Bayesian scoring metric) and calculates an
influence score for each link, representing the sign (þ or
–) and magnitude of influence, with the value 0.0
reserved for non-monotonic relationships (e.g., U-
shaped or combinatoric; Yu et al. 2004).
In order to adapt BNs for ecological data, we made

several modifications in data discretization, pre-filtering
of relationships, and model averaging techniques, details

of which are available in Appendix A. Note that
although functional relationships between species can
be two-way, we present undirected links in our results,
because directionality in BNs can be statistically
equivalent (see discussion of BN equivalence classes in
Appendix B). These links represent the ability to predict
one variable from knowledge of another; this is
prediction in an informative, rather than causal, sense.
For example, equivalent BN representations may show
‘‘altitude ! Wren’’ (knowing altitude helps predict
presence of wrens) or an equally valid ‘‘Wren !
altitude’’ (knowing presence of wrens helps predict
altitude); we would report an undirected ‘‘altitude –
Wren’’ relationship indicating mutual predictive value.

Our model averaging technique provides information
on the probability and average influence score of each
link in the network. We defined highly probable
functional relationships as those in which we have the
greatest confidence of being in the network (further
details in Appendix A). When searching on the bird plus
habitat data sets, connections among habitats were
excluded to enable maximum discovery of bird–habitat
relationships.

Identification of highly connected species.—We calcu-
lated each species or habitat variable’s connectivity by
measuring ‘‘importance’’: the sum of the probabilities of
all links with which a variable was involved. We defined
the spatial scale at which individual species were most
strongly connected as the scale (0.5, 1, 2, or 5 km) within
each year at which it had the highest rank-order
importance.

Comparisons across data sets.—To understand how
specific the discovered network structures were to their
data set, we compared fit of networks across spatial
scales for each year and across years for each spatial
scale. We took each data set (referred to as the original
data set) and compared the BSM scores of the top 100
networks (see Appendix A) discovered from that data
set (referred to as original networks) to those of the
networks discovered on other data sets but fitted now to
the original data set (referred to as comparison
networks). This provides a measure of how well a
structure learned on a different data set explains the
current data: the closer in score the comparison
networks are to the original networks, the better the
other structures explain the dependencies present in the
original data set, and thus the more similar the
dependencies in the two data sets.

Comparison with lasso regression networks.—In order
to evaluate the difference between BNs and a network
building technique more common in ecology, we created
networks from the 1-km habitat data—both raw data
and the same discrete data presented to the BN—using a
lasso regression analysis (an algorithm for linear
regression shrinkage and model selection [Tibshirani
1996]). We calculated a matrix of standardized regres-
sion coefficients for each variable regressed on all others
(number of lasso steps identified by 10-fold cross-7 hwww.cs.duke.edu/;amink/software/banjo/i
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validation) and report links with weights representing
the average of this matrix folded at the diagonal.

RESULTS

Networks recovered by Bayesian network inference
algorithm.—Networks of habitat variables alone are
shown in Fig. 1. The greatest number of highly probable
relationships were present at 1 km; the highly probable
relationships in the 0.5-km and 2-km networks were a
subset of these, and those in the 5-km network were a
further subset. The influence scores of relationships
appearing at three or four spatial scales were similar
across these scales, always the same sign (þ or –) and
differing on average by less than 0.1 (0.07 6 0.01).

Networks of habitat plus birds are shown in Fig. 2.
Influence scores of relationships were highly skewed
toward low values with just a few strong relationships
(Fig. 3), and of the highly probable relationships
between bird species, most (109 of 120) were positive.
Bird–habitat relationships accounted for 35% of highly
probable relationships (including most negative rela-
tionships). Specific links were found more often at a
single spatial scale than expected by chance (v2¼20.2, df
¼ 1, P , 0.001 for 1990; v2¼ 48.3, df¼ 1, P , 0.001 for

2004). For links present at multiple scales, influence
scores were consistent within years, having a mean
difference of 0.12 6 0.01 for 1990 and 0.16 6 0.02 for
2004. Only one pair of influence scores differed in sign
across spatial scales, Dunlin with non-heather in 2004
(#0.19 at 0.5 km and 0.35 at 2 km).

Thirty-one highly probable relationships were found
in both years (at any spatial scale). Of these, only one
differed in influence score sign across years (Curlew with
Snipe,#0.03 in 1990 and 0.16 in 2004). Twenty of these
relationships occurred at multiple spatial scales in at
least one of the surveys, a much higher proportion than
either survey alone (v2 ¼ 12.2, df ¼ 1, P ¼ 0.0005 vs.
1990; v2 ¼ 24.16, df ¼ 1, P , 0.0001 vs. 2004). Nine of
the 31 relationships were between birds and habitat, a
similar proportion to that found overall (v2¼ 0.28, df¼
1, P ¼ 0.60).

Variable importance across networks.—Within survey
years, variable importance was broadly similar across
spatial scales (Kendall’s W ¼ 0.64 for 1990, 0.56 for
2004, P , 0.0001 for both [Legendre 2008; see Appendix
A]). All four scales were individually significantly
concordant with the others (P ¼ 0.001 to P , 0.0001),
although 0.5 km and 5 km had lower concordance than

FIG. 1. Inter-habitat networks. Networks for each of the four spatial scales are shown. Habitat variables are enclosed in ovals;
lines connecting them represent recovered relationships. Line thickness is scaled to the square of relationship probability.
Relationships identified as being highly probable functional relationships are colored red for positive, blue for negative, and black
for non-monotonic, and are labeled with mean influence scores; all other relationships are in gray.
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the others in both years (1990, W* ¼ 0.62, 0.61, for 0.5
and 5 km vs. 0.69, 0.63 for 1 and 2 km, respectively;
2004, W* ¼ 0.55, 0.51 vs. 0.59, 0.59).
A number of species were significantly concordant in

importance across years and spatial scales (Fig. 4). We
draw attention to Golden Plover, which often had the
highest importance; Dunlin, Reed Bunting, Meadow
Pipit, Curlew, and Red Grouse were also consistently
high. Ranked variable importance indicated that raptors
were more strongly connected at larger spatial scales (2
and 5 km) than other bird species in 2004 (v2¼9.08, df¼
3, P ¼ 0.028 [not tested in 1990 due to the shortage of
raptor species]).
Across years variable importance was significantly or

nearly significantly congruent (for 0.5, 1, 2, and 5 km,
respectively: Kendall’s W ¼ 0.71, 0.60, 0.68, 0.61; P ¼
0.002, 0.08, 0.005, 0.07). Of particular interest is the
change between the two surveys: Little Owl at 0.5 km,
Goshawk at 2 km, and Peregrine at 5 km all increased in
importance from 1990 to 2004.
Comparison of structures across data sets.—In all

cases, the original networks were significantly higher
scoring on the original data set than the comparison
networks (Appendix C: Fig. C9). The comparison
networks recovered from spatial scales more similar to
the original data set had higher BSM scores than those
from comparison data sets with greater differences of
spatial scale (with two exceptions; Appendix C: Fig. C9).
Lasso regression networks.—Compared to the BN

results, the lasso regression networks were considerably

more dense: even conservatively considering only

bidirectional influences, there were 25 links for raw data

and 22 for discrete, compared to the BN’s 12 (Appendix

C: Fig. C10). Where the lasso networks shared links with

the BN, however, they tended to agree on sign and

FIG. 2. Interspecific and species–habitat networks. Networks for each sampling year at each of the four spatial scales are shown
(details of all data sets with nodes identified are in Appendix C: Figs. C1–C8). Relationships are formatted as in Fig. 1 (influence
scores not shown). Habitat variables are open circles, and species are solid squares. New species in 2004 are marked by an arc.
Habitats are ordered alphabetically; species are ordered phylogenetically. Node identities, clockwise from first habitat (i.e., 12:00 on
the circle), are: altitude, burned heather, cotton grass, common heather, path distribution, grass, vegetation height, non-heather,
slope, Canada Goose, Red Grouse, Sparrowhawk, Kestrel, Merlin, Peregrine, Lapwing, Dunlin, Golden Plover, Snipe, Curlew,
Redshank, Common Sandpiper, Short-eared Owl, Cuckoo, Skylark, Meadow Pipit, Grey Wagtail, Pied Wagtail, Dipper, Wren,
Whinchat, Wheatear, Ring Ouzel, Mistle Thrush, Magpie, Carrion Crow, Twite, Reed Bunting; and, continuing for 2004 networks
only, Hen Harrier, Goshawk, Buzzard, Hobby, Little Owl, Stonechat, Raven, Lesser Redpoll.

FIG. 3. Magnitude of influence scores. Height of histogram
bars shows frequency of influence scores among links; white
portion represents highly probable relationships, and gray
portion represents other links. Both overall and just considering
highly probable relationships, there is a strong skew toward low
influence scores. Note that an influence score of exactly 0 does
not mean ‘‘no influence,’’ and so the bar at this value should be
interpreted differently.
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relative magnitude of links (r¼ 0.85 raw, 0.94 discrete, P
, 0.0001); there were only two prominent disagree-
ments: the BNs show a non-monotonic relationship
between altitude and path distribution and a negative
relationship between vegetation height and common
heather, while the lasso networks show negative and
positive relationships, respectively.

DISCUSSION

For what we believe is the first time, we were able to
use a Bayesian network inference algorithm to recover
meaningful networks of functional relationships from
ecological data. The networks identified by the algo-
rithm conformed to both the main topological patterns
and (with a few notable exceptions) most of the
important specific relationships that we expect to find
in the upland bird community, giving us confidence in
the novel methods and results presented here. Before
discussing these results in detail, however, we address
the interpretation of these networks. The BN links
represent statistical dependence: these are relationships
that are predictive in an informative, not causal,
manner. The links here reflect samples across a spatial
grid; thus, a link indicates significant spatial relationship
of species and/or habitat characteristics (e.g., spatial
dis- or co-localization of species, positive or negative
association in space with values of habitat characteris-
tics). The particular mechanism may vary from pair to
pair, ranging from facilitation through trophic interac-
tions, as we see below.
The inter-habitat relationships all matched well-

known patterns of co-incidence and exclusion among
plant species and environmental variables (Brown et al.
1993). For example, cotton grass is found at high
altitude; the recovered networks correctly link altitude
to cotton grass with positive influence. Similarly, burned
heather is a subset of common heather being managed
for Red Grouse. The two are appropriately related with
a high positive influence. Additionally, cotton grass
grows in wetter areas than common heather, and grass
displaces common heather in heavily grazed areas;
common heather is linked to both these variables with

 
FIG. 4. The rank of variable importance is plotted for birds

and habitat for all spatial scales in both years on the left; bars
on the right show average value of variable importance across
years and spatial scales: birds and habitats are ordered in
descending average importance value. Open shapes represent
importance rank in 1990 networks, and solid shapes represent
2004 networks; red designates importance that was significantly
concordant across all spatial scales for a given year, and blue
indicates importance that was significantly concordant across
years. Green background shading denotes birds that were new
in 2004. Note that Golden Plover has the highest overall
importance and that importance ranks for this species were
significantly concordant between years for both the 0.5- and 1-
km data sets, suggesting that Golden Plovers are central to the
upland bird community network.
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highly negative influence scores. Note that while burned
heather is also common heather, and thus shares the
same exclusions from grass and cotton grass, the BN
only links common heather to the two grasses. This is
because burned heather’s exclusion from areas of grass
and cotton grass is explained entirely through being a
subset of common heather. Thus, the BN reflects the
direct relationships of common heather with burned
heather, grass, and cotton grass, and the indirect
relationships between burned heather and the grasses
are read from the network structure. Finally, foot paths
in the park tend to follow either ridges or valleys, and
the BN links altitude to path distribution with an
influence of 0.0, correctly indicating the relationship is
neither positive nor negative. The fact that these well-
known relationships are recovered by the BN is a
verification of its ability to find accurate ecological
relationships.
In contrast, networks produced from a lasso regres-

sion analysis of the same data (Appendix C: Fig. C10)
show a nearly fully connected network, including known
indirect relationships of burned heather with many
variables. This was true even of the lasso analysis on the
discretized data, showing that the sparseness of the BN
is not due to the loss of detail engendered by
discretization, but a consequence of BNs preferentially
identifying direct relationships. Thus, the networks
produced by BN analysis appear to be more realistically
sparse.
Bird–habitat associations are also well known in the

uplands (e.g., Pearce-Higgins and Grant 2006), so it is
reassuring that we found altitude (known to be one of
the strongest influences on the upland bird community)
as the most highly connected habitat variable, with
burned heather and common heather in second and
third place (Fig. 4). Notable, however, is that although
slightly over one third of relationships were between
birds and habitats, a surprisingly high number of birds
had no direct habitat relationships. Most obvious
among such absences is relationship between Red

Grouse and common or burned heather: a clear
indication there are missing habitat associations in these
networks. There are several reasons why this may be the
case. First, the satellite derived habitat data are subject
to error (Pearce-Higgins et al. 2006), reducing the
algorithm’s performance. Second, the habitat variables
are not the complete suite known to influence upland
bird distribution. Third, even accurately mapped habitat
variables may be a poorer proxy for the cues birds use to
determine their distribution than the occurrence of other
species that utilize the same resources. Consequently, the
network identifies more bird–bird relationships than
bird–habitat ones. In particular, in all but the 5-km
spatial scale, there is a consistently recurring triplet of
Red Grouse, Skylark, and Meadow Pipit, with two or
three connections among them (see Plate 1); these two
other species may be a more reliable predictor of Red
Grouse than heather. We have less a priori knowledge of
the likely relationships among bird species, though it is
reassuring that raptors are repeatedly linked to known
prey species.

We examine global topological features of our
networks. First, we find many weak and few strong
relationships (Fig. 3). While the precise nature of these
relationships are not known, we expect them to be
reflective of underlying interactions within the commu-
nity, thus suggesting similarity to the many weak and
few strong interactions expected of stable systems (May
2001, Csermely 2004). Second, we find most inter-bird
relationships are positive, as are all relationships
between raptors and other birds. Such general positive
relationships may reflect direct facilitation (e.g., Dunlin
and Golden Plover may benefit through shared nest
defense; cf. Larsen and Grundetjern 1997, Haemig 2001,
Quinn et al. 2003), use of other species (including
competitors and predators) as cues of habitat quality
(Stamps and Krishnan 2005), or mediation by unmea-
sured habitat variables such as food availability. The
pattern for raptors matches the most common expecta-
tion of predator–prey distribution within single popula-

PLATE 1. The networks had a recurring triplet of (left) Red Grouse, (middle) Skylark, and (right) Meadow Pipit. Photo credits:
John Anderson.
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tions (Sih 2005): predators are found in the presence of
their prey. It would be interesting to see if an analysis at
a larger scale, whose samples represented population
sizes rather spatial distribution, would reveal negative
relationships, where absence of predators allowed
growth of prey populations.
We also find the emergence of ‘‘characteristic scales’’ of

functional relationship. In the bird and habitat networks,
significantly more relationships appear at a single spatial
scale than expected. Both the comparison of structures
across data sets and the fact that variable importance
ranks are least similar at the most extreme spatial scales
suggests that network structure is more similar at similar
spatial scales. All this is expected if relationships operate
most strongly at one spatial scale, becoming harder to
identify as the scale moves away from the optimum. The
characteristic scale associated with raptors was larger
than the average characteristic scale of other bird species,
as would be expected from wide-ranging top predators.
The possibility that relationships may be scale dependent
has previously been suggested, but never explicitly
identified (cf. Favreau et al. 2006).
Also interesting is the network change between the

two surveys. It is clear the ecosystem changed in the
fourteen years between surveys: eight new species
appeared in the 2004 survey. Although some of these
apparent colonizations may represent under reporting
(particularly of raptors) in the earlier survey, it also
includes some well known colonizations, such as the
recolonization of the Raven (Cross 2002). The eight new
species had a range of importance, ranging from very
low (e.g., Hen Harrier and Buzzard) to medium-high
(e.g., Little Owl, Goshawk, Lesser Redpoll), suggesting
that species differ in the extent to which they impact and
interact with their new community. Additionally,
network structure changed significantly between the
surveys: networks from one year were always signifi-
cantly worse at explaining data from the other year. This
difference was similar in magnitude to the difference
between the one or two closest spatial scales (Appendix
C: Fig. C9). Thus, the difference between years indicates
a similarly slight shift in the pattern of relationships.
Several relationships were found in both years; these
were present more often than expected at multiple
spatial scales, suggesting relationships with broad
characteristic spatial scales were less influenced by
network reshuffling between years.
In sum, BN algorithms revealed both known patterns

of functional relationship and provided novel insights
into spatial and temporal structuring of ecological
networks. By producing sparse networks of direct
relationships, BNs are likely to be most useful for
researchers interested in revealing a minimum set of
functional relationships that impacts species distribu-
tion. Our application of BNs to ecology takes advantage
of spatial effects of relationships, i.e., species distribu-
tions are affected by ecological interactions. However,
spatial data includes more information than we used,

e.g., species which occur in adjacent but not identical
locations and other such relative spatial patterns. A
method that could incorporate such information may
reveal further features of ecosystems, particularly
concerning the spatial scale of relationships. Developing
a BN algorithm that makes more appropriate use of
spatial data sets must be considered a priority to further
expand their usefulness in ecology.
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APPENDIX A

Supplementary methods for data processing, modification of Bayesian network methods for ecological data, and analysis of
networks (Ecological Archives E091-127-A1).

APPENDIX B

Bayesian network overview (Ecological Archives E091-127-A2).

APPENDIX C

Supplementary figures showing detail networks for species and habitat, comparison of scores across data sets, and comparison of
Bayesian networks with lasso regression analysis (Ecological Archives E091-127-A3).

SUPPLEMENT

R source code (Ecological Archives E091-127-S1).
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