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         Interactive Molecular Networks Obtained by 
Computer-aided Conversion of Microarray Data from 
Brains of Alcohol-drinking Rats    

play today an important role in obtaining expres-
sion data of many genes measured simultane-
ously. After ample experience with some 
generations of expression pro ling platforms 
from deRisi & Brown and A! ymetrix to Agilent ’ s 
and Illumina ’ s  [7,   8,   37] , we are facing substantial 
improvements both in terms of tissue prepara-
tion and reliability and precision of microarrays. 
This has been accompanied by increasing num-
bers of genes with statistically signi cant p-val-
ues identi ed as di! erentially expressed in those 
conditions. Whilst only a few dozens of genes ful-
 lled those criteria previously, very often several 
hundreds are detected more recently. Because 
also statistical tools of processing chip data 
underwent considerable amendments, occur-
rences of false positives or false negatives in those 
datasets have been reduced as well. This increased 
trustworthiness into the data has come along 
with a great deal of confusion to understand and 

 Introduction 
  &  
 In recent years, moving together with techno-
logical progress, modern molecular biology has 
evolved from focusing on single cell components 
to the analysis of whole biological systems. Now-
adays scientists are able to perform global quali-
tative and quantitative analysis of whole 
networks of molecular interactions within a cell. 
This has spurred scientists to generate a new 
branch of biological sciences, whose aim is to 
understand the functional aspects of entire sys-
tems, namely, systems biology. An important task 
here is to explore the  eld of gene and gene prod-
uct relationships. Understanding mechanisms 
and dependencies within gene regulatory net-
works (GRNs) is crucial for obtaining more 
detailed insights into pathological processes, and 
for further drug target identi cation. DNA micro-
arrays, which evolved in the middle 1   990   s  [45] , 
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  Abstract 
  &  
 Lists of di! erentially expressed genes in a disease 
have become increasingly more comprehen-
sive with improvements on all technical levels. 
Despite statistical cuto! s of 99    %  or 95    %  con-
 dence intervals, the number of genes can rise 
to several hundreds or even thousands, which is 
barely amenable to a researcher ’ s understand-
ing. This report describes some ways of process-
ing those data by mathematical algorithms. Gene 
lists obtained from 53   microarrays (two brain 
regions (amygdala and caudate putamen), three 
rat strains drinking alcohol or being abstinent) 
have been used. They resulted from analyses 
on A! ymetrix chips and encompassed approxi-
mately 6   000 genes that passed our quality  lters. 
They have been subjected to four mathematical 
ways of processing: (a) basic statistics, (b) princi-
pal component analysis, (c) hierarchical cluster-

ing, and (d) introduction into Bayesian networks. 
It turns out, by using the p-values or the log-
ratios, that they best subdivide into brain areas, 
followed by a fairly good discrimination into 
the rat strains and the least good discrimination 
into alcohol-drinking vs. abstinent. Neverthe-
less, despite the fact that the relation to alco-
hol-drinking was the weakest signal, attempts 
have been made to integrate the genes related 
to alcohol-drinking into Bayesian networks to 
learn more about their inter-relationships. The 
study shows, that the tools employed here are 
extremely useful for (a) quality control of data-
sets, (b) for constructing interactive (molecular) 
networks, but (c) have limitations in integration 
of larger numbers into the networks. The study 
also shows that it is often pivotal to balance out 
the number of experimental conditions with the 
number of animals.        
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interpret the biological meaning of all those genes. It turns out 
to be simply impossible even for an experienced molecular biol-
ogist to devise a 2D- or even 3-D molecular network that dis-
plays the positions and tentative interactions of those genes (or 
better gene products). Therefore, a great deal of hope to tackle 
that problem rests on computer-assisted approaches. 
 Establishing and manipulating gene regulatory networks  in silico  
can help to understand how expression pro les of single genes 
in uence each other or in uence the whole network. For those 
reasons, modelling of GRNs has become a valued objective in 
modern biotechnology and bioinformatics  [14] . The  eld of 
modelling of GRNs evolves very quickly and results in new algo-
rithms and approaches published almost every day. Usually, 
GRNs are represented by directed graphs, with nodes corre-
sponding to genes, and edges indicating relations between the 
genes. There are several computational approaches for model-
ling gene regulatory networks, for example:  Boolean networks  
 [28] ,  Revelance Networks   [3] ,  Bayesian networks   [12,   39]  and  dif-
ferential equation models   [5] . 
 Because the majority of all published microarray data do not 
entail time-course studies  [46] , we focus here on applying the 
Bayesian network approach to a time-independent microarray 
derived data set. A Bayesian network is a probabilistic model 
that analyses conditional independence structure between 
genes. Edges connecting two nodes represent probabilistic 
dependence relations between them, described by conditional 
probability distributions  [27] . Distributions used here can be 
discrete or continuous, and Bayesian networks can be used to 
compute likely successor states for a given system in a known 
state. Bayesian networks have a great advantage of dealing well 
with noisy measurements and can be easily extended to deal 
with missing data  [20] . Bayesian networks can be also extended 
in order to capture the dynamic aspect of regulatory networks 
by assuming that the system evolves in time. Other extensions 
try to deal with the typical settings related to microarray data 
(many genes and few time points). 
 In this report, we have used gene lists obtained from two brain 
regions (amygdala and caudate putamen) from three rat strains 
drinking alcohol or being abstinent. RNA extracted from those 
tissues was analysed on A! ymetrix chips and approximatetly 
6   000 genes with intensity values     >    100 in at least 25    %  of the 
samples were subjected to (a) basic statistics, (b) principal com-
ponent analysis, (c) hierarchical clustering, and introduced into 
(d) Bayesian networks. The questions we aimed to answer were 
the following:   
 (a) Which genes exhibit the largest changes in their expression 

under alcohol intake, and could therefore be used as markers 
for alcohol addiction? 

 (b) What is the relation between the expression patterns of the 
genes identi ed in (a)?     

 Materials and Methods 
  &   
 Animals 
 Three groups of 2 – 3 months old alcohol preferring rats were 
used for long-term alcohol consumption and gene expression 
pro ling: male P rats (n    =    15; Indiana University, Indianapolis), 
male HAD rats (n    =    13; Indiana University, Indianapolis) and 
male AA rats (n    =    14; National Public Health Institute, Helsinki). 
The rats were kindly provided by T.K. Li (Department of Psychia-
try, Institute of Psychiatric Research, Indiana University School 

of Medicine, Indianapolis;  [35] ) and D. Sinclair (Department of 
Mental Health and Alcohol Research, National Public Health 
Institute, Helsinki;  [9] ). Each rat strain shows alcohol preference, 
as indicated in abbreviations P (preference), HAD (high alcohol 
drinking), AA (alcohol accepting). All experimental procedures 
were approved by the Committee on Animal Care and Use 
(Regierungspr ä sidium Karlsruhe), and carried out in accordance 
with the local Animal Welfare Act and the European Communi-
ties Council Directive of 24 November 1986 (86 / 609 / EEC). 
 According to the protocol of Vengeliene et   al.  [49] , 8 P rats, 7 
HAD rats, and 7 AA rats were given  ad libitum  access to tap water 
and to 5    % , and 20    %  ethanol solution (v / v). All rats underwent a 
two-week deprivation cycle after 8 weeks of continuous alcohol 
availability. After the deprivation period, rats were given access 
to alcohol again and 3 more two-week deprivation periods were 
introduced in a random manner (the duration between depriva-
tion periods varied between 4 and 16 weeks). The long-term 
voluntary alcohol drinking procedure, including all deprivation 
phases, lasted for a total of 52 weeks. Ethanol intake (4.0 – 5.3   g / kg 
of body weight / day for HAD-P-AA rats, respectively) was calcu-
lated as the daily average across 7 measuring days. For compari-
son, 3 age –  and weight-matched control groups, consisting of 7   P 
rats, 6 HAD rats, and 7 AA rats, experienced identical handling 
procedures for the entire duration of the experiment, but did not 
receive alcohol.   

 Gene expression pro ling in alcohol-preferring rat 
strains 
 Preparation of brain samples and RNA isolation have been per-
formed as described  [50] . Target preparation was done for indi-
vidual samples from caudate putamen (cpu) and amygdala (amy) 
using 5    ) g of total RNA. Hybridization to RG U34A arrays, stain-
ing, washing and scanning of the chips were performed accord-
ing to the manufacturer ’ s technical manual (A! ymetrix, Santa 
Clara, CA).   

 Data mining 
 Micro Array Suite 5.0 (A! ymetrix) derived cell intensity  les 
(CEL) were processed in R 2.1.1 language and environment 
( http://www.R-project.org ) using Bioconductor 1.6 Packages 
 [16] . Each array was inspected for regional hybridization bias 
and quality control parameters as recently described  [41] . Fifty-
three arrays (27 from caudate putamen and 26 from amygdala) 
passed the quality  lter and were included in the statistical 
analysis. Of the 8   799 probe sets on the RG_U34A array, only 
those with intensity values     >    100 in at least 25    %  of the samples 
were retained (6   344 probe sets). A 3-way analysis of variance 
(ANOVA) was used to identify di! erentially expressed genes 
across strain, brain region and treatment. ANOVA tests for sig-
ni cant di! erences in the mean of the two treatment groups by 
comparing the between-groups variability to the within-group 
variability. The di! erence in the mean values is not signi cant if 
the variability within the groups does not di! er from the varia-
bility of the whole set. A measure of the signi cance of the dif-
ference between two groups is the p-value with 0    <    p    <    1, which 
is given as the result of an F-test with the variance values as 
input.   

 Dimensionality reduction 
 We use two common approaches to reduce the dimensionality 
of the data, principal component analysis (PCA) and clustering. 
Principal component analysis is a linear transformation of the 
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data which is based on computing the eigenvalues and eigenvec-
tors of the covariance matrix  [26] . The eigenvectors (called prin-
cipal components) to the largest eigenvalues have the feature 
that, if the data is projected onto the subspace spanned by these 
vectors, then this projection captures a very high percentage of 
the variation in the data. This means that the so obtained dimen-
sionality reduction can be performed without loosing much 
information given by the data. 
 If the data includes a set of  n  variables and  m  observations, each 
variable can be represented as a point in an  m -dimensional 
space. If the expression patterns of genes di! er under alcohol 
self-administration from the expression patterns in control ani-
mals, then the data points (with the experiments as variables 
and the genes as observations) would form two distinct clusters 
in this  m -dimensional space. We have used PCA to visualize the 
data by projecting it onto the plane spanned by the  rst two 
principal components. 
 In a further step, we apply a multiple-link nearest neighbour 
clustering algorithm, a bottom-up clustering method, where 
iteratively the elements or clusters with the smallest distance 
are joined. The so obtained hierarchical clustering yields a dis-
tance relationship between all elements that can be represented 
in the form of a tree (or dendrogramme). We use the open access 
software Cluster 3.0 by Michael Eisen and Michiel de Hoon and 
Treeview ( http://jtreeview.sourceforge.net ). 
 The objective of the clustering is to partition the data into groups, 
i.e. sets of genes with similar expression patterns for the given 
experiments, or sets of experiments that yield similar expres-
sion patterns for all genes. The advantage of hierarchical cluster-
ing over other clustering methods is that the data is not 
partitioned into a  xed number of groups. Instead, the obtained 
hierarchy provides information about clustering of the data at all 
scales, from  ne to coarse.   

 Bayesian networks 
 A Bayesian network (BN) is a method to graphically display sta-
tistical dependencies among a number of variables. It is drawn 
with the variables as  “ nodes ”  connected by  “ links ” : a link con-
necting two nodes indicates that there is a statistical depend-
ence between them. The statistical dependencies in a BN are the 
minimal set of such dependencies required to explain the data. 
In this way, BNs can distinguish direct in uence among meas-
ured variables from indirect in uence  [11,   19] . 
 The direction of the links in a BN does not necessarily corre-
spond to causality; it is only a representation of statistical 
dependence. All variables that have links directed to another 
variable are known as the  “ parents ”  of the latter variable, known 
as a  “ child ” . The relationship between a variable and its parents 
can be conceptualized, as the value of the parents are useful for 
predicting the value of the child. This can be either independent, 
for example, one parent being elevated means a higher probabil-
ity the child is elevated, or in a combinatoric manner, for exam-
ple, two parents being increased means a higher probability the 
child is increased (with no obligatory relationship to each indi-
vidual parent). 
 Discrete BNs require variables to come in a number of discrete 
states, i.e. no / yes, low / medium / high, etc., and are capable of rep-
resenting many types of statistical dependencies including lin-
ear, nonlinear, stochastic, and arbitrary combinatoric  [11,   19] . 
Multiple types of variables can be combined in a BN, for example 
gene expression data and experimental manipulations can both 
be present as nodes in a BN. When working with data that is 

originally continuous, discrete BNs require intelligent discretisa-
tion of the values  [13,   54] . For example, some data sets have clear 
modes, which can suggest the number of division of discrete 
states. In other cases, a method of quantile discretisation is used 
frequently (i.e., lower 33.3    %     =    low, middle 33.3    %     =    medium, etc.). 
When presented to the BN algorithm, discrete states are coded 
as sequential integer values, starting from 0. The sequential 
nature of these states enables the BN algorithm to provide an 
 “ in uence score ”  for each link produced  [54] . This varies 
between     -    1 and 1, showing both direction and magnitude of 
in uence between two variables. When the in uence score is 
precisely equal to zero, this indicates that the in uence is non-
monotonic, i.e., neither clearly positive nor negative (for exam-
ple, a U-shaped or combinatoric relationship;  [54] ). 
 A BN algorithm is based on the calculation of a score, known as 
a Bayesian Scoring Metric (BSM), which represents the  t of a 
given network to a given dataset  [11,   19] . The BSM used by Banjo, 
which is applied here, includes an inherent penalty for complex-
ity which avoids over tting networks to a dataset. Because the 
problem of  nding the best BN to describe a set of data is NP-
complete (computationally intractable), heuristic search tech-
niques are applied to  nd a high-scoring network  [11,   19] . These 
techniques move through the space of possible BNs using a set of 
intelligent rules, which guides them to high-scoring networks. 
Often, some method of combining a number of the highest-scor-
ing networks, or results of multiple searches, or both, is used to 
provide links with the highest degree of con dence  [18] . 
 Here, Banjo v.2.0.1 ( http://www.cs.duke.edu/~amink/software/
banjo/ ) was applied to each set of genes, plus three variables 
representing the drinking / nondrinking conditions, brain regions, 
and rat strains. We used a simulated annealing search with an 
equivalent sample size of 1, and a max parent count of 2 (to 
avoid potential false positives;  [55] ). Each search was run until it 
had visited 200   million networks and calculated a consensus 
network from the top 1   000 scoring networks found  [18] . 10 
separate searches for each set of genes have been carried out.  

 Na ï ve Bayes Classi er 
 The na ï ve Bayes classi er is related to Bayesian networks. It is a 
Bayesian network where only one type of link is present: those 
from a variable representing some condition of interest to vari-
ables that are related to this condition  [10,   34] . In contrast to a 
BN, links in a na ï ve Bayes classi er can represent either direct or 
indirect in uences. A na ï ve Bayes classi er can be used to select 
variables that have some sort of relation to a condition of inter-
est, by comparing the BSM when the condition is linked to the 
variable to when it is not. The di! erence between these two val-
ues is the log of the ratio of their probabilities ( “ log ratio ” ), rep-
resenting a measure of how probable it is that the variable is 
related to the condition of interest. With the BSM used by Banjo, 
each unit of the log ratio represents how many multiples of  e  
more probable it is that the variable is related versus not related 
(e.g. log ratio    =    1 is  e  times more probable; log ratio    =    5.6 is 
 e  5.6     =    270 times more probable).     

 Results 
  &   
 Preprocessing and quality checks 
 The performed 3-way ANOVA shows that gene expression di! ers 
with high signi cance in the two considered brain areas (amy-
gdala and caudate putamen). Smaller changes in the expression 
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levels are found for the three di! erent rat strains, and almost no 
di! erence between the drinking and control animals (    "  #     Fig. 1  ). 
The highly signi cant e! ect between the two brain regions has 
been found previously where it turned out that about 2 / 3rd of 
the interrogated probe sets had been a! ected. An important 
consideration for such a strong e! ect has been whether or not it 
was due to a technical bias. We therefore gathered additional 
information for the 20 top-ranked, region speci c probe sets. 
These show a 2 – 8 fold di! erence in intensity values between 
caudate putamen and amygdala. The 20 probe sets represent 17 
genes, 15 of which are represented in the Alan Brain Atlas for 
mouse ( http://mouse.brain-map.org ). In each case the di! erence 
between the regions was concordant with our microarray data 
(i.e.  Drd1a, Tnni3 Itpr1, Pcp4l1  and  Tac1  showing higher expres-
sion in  CPu, while Gnas, Nnat, Pnck, Hpcal1, Calb2, Crhb2, Gabbr2, 
Cacna1   g, Oprl1  and  Camk2d  are more strongly expressed in 
amygdala). This speaks against a processing error as the main 
source for the variance between regions. Furthermore, major 

expression di! erences between brain regions are very reliable 
phenomena in microarray applications  [47] . 
 Similar results are obtained through PCA and hierarchical clus-
tering. For both approaches we used the genes with expression 
values that di! er most with regard to treatment (542   genes with 
p-values below 0.05). PCA was performed, where the conditions 
(animal and brain area) were considered as variables and the 
corresponding values of gene expression as observations. In this 
way, it is possible to evaluate whether conditions can be sepa-
rated using the genes; for example, if the gene expression would 
di! er substantially for drinking animals compared to the control 
animals, the projection of the data onto the plane spanned by 
the  rst and second principal component would reveal clearly 
separated clusters, one containing the data for drinking animals 
and the other for the controls. 
 In     "  #     Fig. 2  , data has been visualized in two dimensions after 
applying PCA. In     "  #     Fig.   2A   the colouring distinguishes the two 
brain areas, the colouring in     "  #     Fig.   2B   shows the three rat 
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  Fig. 1           p-value histogram for main e! ects of brain region, strain and ethanol treatment from 3-way ANOVA. Each panel shows the number of probe sets 
(y-axis) within a p-value bin of 0.02 width.  

        Fig. 2           Data visualization after dimensionality reduction through PCA. Each picture shows the same data points, however, with di! erent colouring 
denoting the two brain areas ( A ; blue  –  amygdala, red  –  caudate putamen), the three rat strains ( B ; blue  –  AA, red  –  P, black –  H), and the treatment ( C ; blue 
 –  drinking, red –  control).  
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strains, and the coloring in     "  #     Fig.   2C   displays drinking and con-
trol conditions. 
 One can see, that the expression values di! er signi cantly 
between the two brain areas (    "  #     Fig.   2A  ). The separation between 
the three rat strains is less clear, unless strain  “ blue ”  is ignored 
(    "  #     Fig.   2B  ). A comparison of the data points in terms of drink-
ing vs. abstinence does not show any clear separation at all 
(    "  #     Fig.   2C  ). 
 Hierarchical clustering results in similar  ndings.     "  #     Fig. 3   shows 
the resulting dendrogramme, which represents the similarity of 
conditions with respect to their corresponding gene expression 
patterns. Similar conditions are joined early in the process, like 
cH13 and cH15 on the far right position in     "  #     Fig. 3  . The largest 
dissimilarity is found between the two brain areas (a    =    amygdala; 
c    =    caudate putamen), as seen in the dendrogramme where the 
two groups a *  and c *  join last. Within each of the two groups, 
the next split separates the three groups corresponding to the 
three rat strains ( * P *  corresponding to P,  * A *  to AA, and  * H *  to 
HAD rats). But then, within each group where brain area and rat 
strain agree, there is no further clear separation into control and 
drinking (C / D). 
 The three approaches con rm similar  ndings, i.   e. that changes 
in gene expression due to treatment are much less pronounced 
than expression di! erences related to brain area or rat strain. 
Therefore,  the e" ect of treatment can be compared only 
within the relatively small groups of animals of the same 
strain, and within the same brain area . Basically, ANOVA is 
very useful to tease apart e! ects of multiple factors, and to iden-
tify those genes having the strongest di! erence related to our 
particular factor of interest (low p-values for drinking). This 
leaves us with a large list of genes and no further information. 
Any further analysis attempting to reveal function or relation-
ships to drinking of those genes is confounded by the di! erent 
conditions. For example, there is no  a priori  reason to assume 
that a particular gene will be a! ected in the same way by drink-
ing behaviour in di! erent brain regions. In fact, because di! er-
ent functions of brain regions can often be delineated by 
di! erences in gene expression  [51]  and the same gene expressed 
in di! erent brain regions can result in di! erent behaviour  [17] , a 
more reasonable assumption is that drinking behaviour would 
have a unique in uence on gene expression in each brain region, 
thus requiring separate analysis of brain regions. For each of the 

experimental groups in this study, expression patterns in maxi-
mally 7 animals can be compared to the patterns of the same 
gene in no more than 7 other animals. Since alcohol drinking 
causes only very small changes in gene expression levels, the 
statistics are not very reliable. Thus, the identi cation of target 
genes involved in the development of alcohol addiction is not 
well supported by this kind of data. Much better results would 
have been obtained if only animals of one strain had been used, 
but increasing the number of animals to the  total  number used 
here.   

 Identi cation of target genes for alcoholism 
 Nevertheless, we aimed at identifying the set of genes showing 
expression patterns that di! er most for the two types of treat-
ment (drinking / control). First we used the 3-way ANOVA per-
formed for the three groups (brain area, rat strain, treatment), 
and chose the genes with the lowest p-values (all below 0.0015) 
with respect to treatment. Second, we applied a na ï ve Bayes 
classi er, using drinking as the condition of interest, to all 6   344 
genes, and selected those genes that were related to drinking 
with a log ratio greater than 1 (   "  #      Table 1  ). 
 To examine the relationship between these two methods, we 
checked whether a high signi cance of the changes in gene 
expression rates in drinking conditions, (low p-values), corre-
sponded to a high signi cance in terms of the log ratio. Interest-
ingly, we found no correlation between p-values and log ratios. 
Furthermore, many of the genes characterized by a high log ratio 
have very high (non-signi cant) p-values. 
 Reasons for the missing correlation of the two measures are 1) 
the di! erent importance of the data variance for the two 
approaches, 2) the discretisation needed for the Bayesian 
approach, and 3) the non-monotonic relationship found by the 
na ï ve Bayesian approach. To perform a Bayesian network analy-
sis, the data need to be discretised. We have chosen a discretisa-
tion into three states (low, medium, high), whereby the low, 
medium and high level is de ned for each gene separately. Thus, 
the value of a low expression level in gene  a  can correspond to a 
high expression level in gene  b , if the average expression level of 
 b  is smaller than of  a . Through the discretisation of the data, we 
loose information about the variance in the expression levels. A 
comparison of the variance of the two groups (drinking / control) 
is, however, the central point of the ANOVA. 
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   Fig. 3           Dendrogramme representing the results of nearest neighbors clustering. The  rst letter of the array label denotes the brain area (a    =    amygdala, 
c    =    caudate putamen), the second letter classi es the rat strain (A    =    AA rats, P    =    P rats and H    =    HAD rats), and the third letter the treatment (C    =    control, 
D    =    drinking). The  nal digits designate individual animals within that group.  
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 In     "  #     Fig. 4  , we illustrate the di! erent information gained from 
the two types of analysis by showing expression values of 
exemplarily selected genes for the control and drinking experi-
ments.     "  #     Fig.   4A   shows the gene with the lowest p-value, while 
    "  #     Fig.   4B   shows the gene with the highest log ratio. It can be 
seen that the expression values of the gene in     "  #     Fig.   4B   scatter 
much stronger than the values of the gene in     "  #     Fig.   4A  . Thus the 
ANOVA favours data where the variance of the expression values 
in the two groups (control / drinking) is small, while the Bayesian 
approach has no relation to variance in the data. It is visible, 
however, that the gene expression di! ers for both cases between 
the two groups. For the p-value selected gene, expression is 
higher in control (non-drinking) animals; for the na ï ve Bayes 
selected gene, expression in drinking animals is less variable and 
tends to be high, while expression in control animals is more 
evenly spread across the range. 
 In     "  #     Fig.   4C  , gene expression values of the gene with the highest 
log ratio having a non-monotonic dependence on drinking are 
shown. Here, the expression values show low, medium and high 
values in the control group, while in the drinking group the 
medium expression values are lacking completely. The ability of 
 nding such non-monotonic relationships, as well, is a great 
advantage of the Bayesian approach. In contrast, analysis of vari-
ance can detect only purely monotonic changes. 

 The conclusions from this study are that both approaches have 
certain advantages and disadvantages. In contrast to the ANOVA, 
the Bayesian approach has the disadvantage that it looses infor-
mation contained in the original (non-descretised) values such 
as level of variance. On the other hand, this approach can also 
handle non-monotonic changes, which is not possible through 
analysis of variance. Therefore, it makes a lot of sense to combine 
information from both to identify interesting genes.   

 Gene interactions 
 Beyond creating lists of genes that act di! erently across drinking 
versus non-drinking, building networks enables us to provide a 
context surrounding these di! erentially expressed genes. 
Because the size of the BN search space rises super-exponen-
tially with the number of nodes, it is preferable to have a smaller 
set of nodes to work with. We selected genes to include in a BN 
in two ways, making two sets of BN analyses. First, we made use 
of the ANOVA p-values showing the in uence of the drinking /
 non-drinking conditions: we performed a network analysis of 
the 30 genes with the lowest p-values. Second, we used the 
genes selected by the na ï ve Bayes classi er with a log ratio 
greater than 1. 
 For each set of genes, we ran the BN search 10 times in order to 
evaluate the consistency of the search. For example,     "  #     Fig. 5   
shows overlays of networks resulting from 10 di! erent searches. 

  Table 1       Genes selected as related to drinking by the na ï ve Bayes classi er (left) and analysis of variance (right) In the left table all 30   genes selected by the 
classi er are listed, along with in uence scores showing their relationship to drinking (a positive in uence (red) means that drinking is related to higher expres-
sion of the gene; negative (blue) that drinking is related to lower expression; non-monotonic (NM) means that the relationship is neither positive nor negative), 
and a log ratio representing a measure of the signi cance of the relationship (higher ratio means more signi cance). The 16 genes with log ratios greater than 
one are shaded in grey: they are considered the most signi cantly related to drinking, and were used to form a network (for  “ log-ratio ”  see: Mat. & Meth.: Na ï ve 
Bayes Classi er). The right panel shows the 30 genes with the lowest p-values. 

   Accession number  Gene name  In uence  Log Ratio     Accession number    Gene name    p value  

   M10094_9at  RT1-aw2  0.31  5.59    M27217_at  Klk1b21  0.000014 
   X57169_i_at  Crygd  0.31  3.43    AF001898_at  Aldh1a1  0.000019 
   rc_AI639520_at  not de ned  NM  3.34    X57169_i_at  Crygd  0.000024 
   D83348_at  Cdh22  0.26  2.38    rc_Al178971_at  globin, alpha  0.000038 
   rc_AA891695_i_at  Ly6al      (    0.37  2.26    X56325mRNA_s_at  Hba-a2  0.000048 
   AA684537_at  not de ned  0.28  2.21    S79304_s_at  Cox6  0.000101 
   rc_AA894099_at  Vps4a      (    0.22  1.82    rc_AA875406_at  not de ned  0.000106 
   AF038043_at  Treh  NM  1.49    rc_AA799801_at  RGD1306959  0.000132 
   rc_AA900582_at  A2m  NM  1.36    X62327cds_r_at  not de ned  0.000135 
   AF037072_at  Car3      (    0.19  1.33    rc_AA860044_at  Ccdcd117  0.000138 
   rc_AA799745_at  Cdk5rap3      (    0.39  1.22    L01793_g_at  Gyg1  0.000142 
   D86297_at  Alas2      (    0.37  1.15    M10094_g_at  RT1-Aw2  0.000387 
   X60769mRNA_at  Cepb  0.24  1.15    AB017140_g_at  Homer1  0.000389 
   AF001898_at  Aldh1a1  -0.37  1.02    AB003726_at  Homer1  0.000390 
   M98826mRNA_at  Phkg1  NM  1.02    D86297_at  Alas2  0.000487 
   X06150cds_g_at  Gnmt  NM  1.02    rc_AI070295_g_at  Gadd45a  0.000545 
   X56917_at  Itpka  NM  0.95    rc_AA893074_at  Adora2b  0.000574 
   rc_AA860044_at  Ccdc117      (    0.37  0.9    rc_AA849038_at  Rpl31  0.000654 
   J04791_s_at  Odc1  NM  0.82    rc_AI232078_at  Ltbp1  0.000678 
   X54531mRNA_at  Dnm1  NM  0.82    X13722_at  Ldlr  0.000791 
   rc_AI229421_at  Mapkapk3  NM  0.79    S69383_at  Alox15  0.000891 
   rc_AA892561_at  RGD1309534      (    0.35  0.7    AJ005023_at  RT1-A3  0.000899 
   X13722_at  Ldlr      (    0.28  0.54    rc_AA892799_i_at  Grhpr  0.000959 
   X62146cds_g_at  Rpl11  NM  0.54    X02322Poly_A_Site.1_s_at  not de ned  0.001046 
   rc_AA892863_at  Mtch2      (    0.32  0.42    rc_AA799678_s_at  Egln3  0.001085 
   S55427_s_at  Pmp22      (    0.28  0.39    rc_AA859645_at  Atrn  0.001189 
   rc_AA875563_g_at  Rcn1  NM  0.36    U53858_at  Capn1  0.001241 
   rc_AI104679_s_at  Ndufc1  0.2  0.36    rc_AA892551_i_at  not de ned  0.001386 
   S83194_s_at  Camkk1  0.2  0.36    rc_AA892647_at  LOC684887  0.001394 
     NM    =    non-monotonic   
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One can see that most links exist for all 10 searches, a few were 
found in a smaller number, and there are two links that were 
only found in one search. 
     "  #     Fig. 5   also illustrates some general features of Bayesian net-
works relevant to  nding gene interactions in a data set. First, 
because BNs work by using heuristic search, the same data set 
does not always produce the same answer. Therefore, it is impor-
tant to run multiple searches as done here. Those links that 
reappear consistently across searches are the ones in which to 
have the most con dence. Hence, the success of the overall 
search can be assessed by appearance of similar answers across 
searches: in case of inconsistent links, it would be necessary to 
either collect a consensus over more networks, look at more net-
works in each search, and / or start with higher quality data. 
Moreover, because link direction in the network does not corre-
spond to causation, the direction of links can be variable across 
networks. For example, all 10 searches found the interaction 
between RT1-Aw2 and crystallin, gamma D (Crygd). However, 
they were equally split on the direction of interaction. This does 
not mean that there is some confusion about the directionality 
of this link. It only means that the statistical dependence is bal-
anced su#  ciently so that the direction does not matter. Corre-
spondingly, when all 10 searches reveal the same direction, this 
does not say anything about causation: link direction is gener-
ally forced by considerations of combinatoric in uences (all links 
directed toward a child from two parents would suggest a com-
binatoric relationship, where both parents are needed to deter-
mine the child ’ s value; all links directed away from a parent to 
multiple children would suggest, that there is no combinatoric 
relationship among the children relevant to their parent). 
 Thus, when assembling the network of interactions in form of a 
summary from a dataset, we only consider links found in all 10 
searches, but disregard the direction of links.     "  #     Fig.   6 and 7   
show these summaries of the 10 searches for the p-value selected 
and na ï ve Bayes selected genes, respectively. 
 We see that both sets of genes revealed a number of interactions 
among them. However, the genes selected using the na ï ve Bayes 
method had more interactions with the drinking node. This 
makes sense, because we chose these genes speci cally because 
they scored high with the log ratio for being related to drinking, 
and the BN search uses a scoring method based on the same 
basis to determine the links. 

 Both of these networks enhance our selected gene lists by pro-
viding further information, such as which genes may interact 
with each other and which serve as intermediaries between 
drinking and other genes.    

 Discussion 
  &   
 Biology and Molecular Networks  
 Haemoglobin-related subnetwork 
 The present results con rm some previous  ndings, but also add 
new twists to our understanding of molecular mechanisms of 
alcohol dependence. We have described recently the tentative 
involvement of downregulated haemoglobin transcription  [15] . 
Here, we see a direct connection of globin mRNA expression 
with alcohol drinking (    "  #     Fig. 6  ). Globin mRNA has been shown 
to be expressed by neurons  [44] . Moreover, haemoglobin-alpha 
and delta aminolevulinate synthase (Alas2) (    "  #     Fig. 7  ), that were 
included in that hypothetical network, have been identi ed in 
this report. Therefore, networks composed of molecules associ-
ated with haeme synthesis, haemorphins and circadian rhythms 
appear to be a! ected by ethanol. Whilst this aspect is no longer 
surprising, it is good to  nd another  “ expected ”  transcript, as 
well: aldehyde dehydrogenase (    "  #     Fig. 7  ). The role of its sub-
strate acetaldehyde that may accumulate in brain upon occur-
rence of genetic variants or its inhibition by drugs has been 
reviewed just recently  [21] .   

 Immunoregulatory Subnetwork 
 By contrast, additional transcripts raise questions as to their 
contribution to addiction and encourage the development of 
new hypotheses. Some transcripts appear to constitute a con-
nection to the immune system  [33] , such as RT1-Aw2, A2m, 
Alox15, Ldlr, and Ly6al. Rt1-Aw2 is the heavy chain of MHC class 
I, located on plasma membranes of antigen processing and pre-
senting cells, whereas lymphocyte antigen 6 complex (Ly6al) are 
molecules expressed by lymphocytes. Arachidonate 15-lipoxy-
genase (Alox15) is involved in eicosanoid synthesis and other 
lipid metabolizing pathways, which the LDL-receptor (Ldlr) may 
be associated to, as well. LDL-R-related protein plays an impor-
tant role in the clearance of plasma-activated alpha 2-mac-
roglobulin  [24] . Alpha 2-macroglobulin (A2m) has been 
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 Fig. 6           Links found in all 10 searches of p-value selected genes. Nodes between which all ten searches found a link, in either direction, are shown. Nodes 
which have no links are omitted from this picture.  

   Fig. 5           Links found in 10 individual BN searches using na ï ve Bayes selected genes. Each search is represented by links of one colour.  
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described as an important marker for Alzheimer ’ s disease  [31]  
and has been known for a long time as an acute phase protein, 
hence, is involved in early phases of the immune response  [6] . By 
thinking also of the apoptosis-related transcript of Gadd45a, one 
can conclude that there is a strong indication of ongoing 
immune-related processes in brains of those alcohol-drinking 
animals. 
 Cebp beta is a transcription factor that plays an important role 
during development of the CNS. Multiple gene targets have been 
identi ed that may be induced or repressed by this molecule 
 [29] . Amongst others, it is involved in the regulation of immune-
related genes, such as IL-1, IL-6, IL-8, TNF-alpha, MIP-1-alpha, 
chemokine receptor 5 (CCR5) and cyclooxygenease-2 (Cox-2) 
 [42,   52] . In terms of alcoholism, it may be important to mention 
that it in uences genes of the dopamine signalling pathways as 
shown in striatal neurons  [32] .   

 Cytoskeletal Subnetwork 
 Cadherin22 (Cdh22) is a typical cell-cell adhesion molecule 
expressed at neuronal pre- and postsynaptic sites  [53] . Its inter-
actions with beta-catenin and F-actin are well documented. 
Cadherin22 expression appears to strengthen synapse forma-
tion and maintenance  [22] . In this way, the cadherins are criti-
cally involved in dynamic molecular networks communicating 
between structural components of pre- and postsynaptic ele-
ments. Apart from that, Cdh13 has been found to be a! ected by 
alcohol in a genome-wide association study, that has just 
recently been published  [48] .   

 Reactive, Compensatory Network 
 In this regard, the expression of trehalase (Treh) appears to be of 
special interest. The enzyme degrades the disaccharide treha-
lose to two glucose molecules. Trehalose is supplied by nutri-
tion. Very often, it has been used in vitro as a cryopreservative to 
prevent denaturation of proteins and damage to cells or even to 
whole organs upon deep-freezing  [25] . Along with alpha-globin, 
trehalose has been found associated with beta-amyloid plaques 
in animal models of Alzheimer ’ s disease and has been shown to 
exert inhibitory e! ects on huntingtin and A-beta peptide aggre-
gates  [1] , and reduced aggregate formation in oculopharyngeal 
muscular dystrophy  [43] . Downregulation of trehalase in AA rats 

could be interpreted as a bene cial, compensatory response to 
the adverse e! ects of alcohol on cellular and molecular struc-
tures. However, this is clearly not more than one little piece in a 
mosaic of molecular networks involved in compensatory mech-
anisms.   

 Tentative Networks 
 Unfortunately, there is presently no biological explanation for a 
tentative connection between RT1-Aw2 and crystallin-gamma 
(Crygd). Crystallin-gamma, like crystallin-alpha, is a major pro-
tein of the eye lens  [2] . The eye, like the CNS has been considered 
as an immune-privileged organ and, therefore, may maintain 
comparable, and very special interactions with the immune sys-
tem  [4] . Crystallin-gamma reportedly plays a role in di! erentia-
tion of the epidermis  [2] . Regulation of crystallin-gamma D 
transcription during development has been thoroughly studied 
by Klok et   al.  [30] . Moreover, the molecule appears to in uence 
Na,K-ATPase and, hence the resting potential of neurons  [38] . 
This gene pair may be viewed as a good example that mathemat-
ical modelling studies on laboratory data can provide hints in 
which direction it may be rewarding to further extend labora-
tory investigations. It, however, also highlights a general prob-
lem inherent to gene lists: the cut-o!  at certain thresholds for 
sake of statistics. Genes above that level may, hence, display no 
evident relationship to each other but, nevertheless, may be con-
nected through genes hidden in statistical noise. We assume the 
existence of an underlying network, but are unable to recognize 
it.    

 Mathematical Modelling 
 Principal component analysis (PCA) based on ANOVA criteria 
revealed three results : a highly signi cant correlation (di! eren-
tial expression) between the two brain regions under investiga-
tion, a moderately high correlation between rat strains and a 
lower correlation between drinking and non-drinking condi-
tions. These  ndings highlight the well known requirement to 
study gene expression in well-circumscribed functional brain 
units (such as N. accumbens shell vs. core)  –  ideally in single 
cells  –  rather than including regions encompassing multiple 
units, like striatum or hippocampus. 

  Fig. 7           Links found in all 10 searches of na ï ve Bayes selected genes. Nodes between which all ten searches found a link, in either direction, are shown. The 
nodes are shaded to represent their na ï ve Bayes scores with respect to drinking: darker colour means more signi cant score.  



Original Paper S127

 Matth ä us F et   al. Interactive Molecular Networks    …    Pharmacopsychiatry 2009;   42 (Suppl. 1): S118 – S128 

 The di! erential gene expression observed in the di! erent rat 
strains is not unexpected but raises questions about a general-
ized concept of  “ alcohol-dependent ”  gene regulation. Those 
strain di! erences may indicate distinct susceptibilities and, 
hence, distinct responses of the genetic  “ background ”  to ethanol 
exposure. This makes the search for  “ alcohol-responsive ”  genes 
more di#  cult, since those genes may show strain-dependent 
di! erences. Moreover, in this light, translation of those data to 
therapeutic strategies in the clinical setting requires even more 
caution. 
 The comparison of p-values of genes with the na ï ve Bayesian 
approach leads to interesting results. The genes with a high log-
ratio identi ed by the Bayesian approach frequently have very 
high (non-signi cant) p-values resulting in gene lists with little 
overlapping genes. Admittedly, there is loss of information about 
the variance of data in the Bayesian approach. This, however, 
may even be advantageous compared to ANOVA-based compu-
tations, since it reduces noise and includes non-monotonic 
changes. This has been nicely illustrated in     "  #     Fig. 4   on the right 
compared to the left panel in that  gure. Bayesian networks tend 
to be highly conservative, providing a few, strong interactions at 
the expense of potentially missing weaker ones and thus leading 
to many  “ false negatives ” ; in contrast, ANOVAs use of parametric 
statistics enables them to pull out even weak relationships from 
highly factorized data, as we have here. Thus, ANOVAs may be 
more bene cial for providing an overview of the e! ects of a 
treatment, while BNs may be more useful for pulling out a hand-
ful of promising targets to further investigate. 
 Furthermore, when using those two distinct approaches to 
search for genes directly related to drinking in functional rela-
tionships, eventually three genes emerged from the p-value 
selected genes and  ve genes surfaced from the Bayesian 
approach. Since most of those genes are not the same, the com-
bined approaches increased the number of candidate genes and, 
consequently, the likelihood of identifying pivotal ones. 
 Admittedly, the statistical power could have been better if less 
conditions or more animals per condition had been chosen. The 
di! erences in gene expression between the strains, however, 
were somehow surprising, because a set of genes speci cally 
regulated by ethanol and irrespective of the strain was 
expected. 
 Finally, despite the low  n -numbers, no experiments have been 
done on a  time-scale . The Bayesian and other mathematical 
approaches, however, often rely on those kinds of data. Although 
more experiments are needed, time-course studies would 
increase the statistical power and more precise biological con-
clusions, especially about the development of a disease, could be 
drawn. Examples using Bayesian approaches in microarray stud-
ies can already been found in the literature  [23,   36,   40] . 
 Altogether, it can be concluded, that mathematical approaches 
using biological datasets are becoming more and more indispen-
sable to extend existing views of biological interactions and to 
reveal new aspects that result in new hypotheses upon mecha-
nisms of disease-related molecular networks.    
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