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Abstract We present a new approach to learning di-
rected information flow networks from multi-channel
spike train data. A novel scoring function, the Snap
Shot Score, is used to assess potential networks with re-
spect to their quality of causal explanation for the data.
Additionally, we suggest a generic concept of plausibil-
ity in order to assess network learning techniques under
partial observability conditions. Examples demonstrate
the assessment of networks with the Snap Shot Score,
and neural network simulations show its performance
in complex situations with partial observability. We
discuss the application of the new score to real data and
indicate how it can be modified to suit other neural data
types.
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1 Introduction

Understanding the brain boils down to understanding
its interplay on many different spatial and temporal
scales. Therefore, fundamental knowledge about the
nervous system’s connectivity is crucial for deeper in-
sights into its machinery. It is thus not surprising that
significant efforts have been spent for the development
of both anatomical and analytical approaches in order
to reveal yet another jigsaw piece of brain circuitry.

Current technical advances in spatial and temporal
resolution have led to an increasing amount of phys-
iological data with many channels recorded simulta-
neously (e.g. Oka et al. 1999; Heuschkel et al. 2002;
Johnson and Welsh 2003; Tsytsarev et al. 2006; Sato
et al. 2007). The increasing dimensionality of the data
raises the need for powerful computational tools to
detect and extract critical features for further analysis.
Our work joins the class of analysis tools for electro-
physiological recordings—in particular multi-channel
spike trains. The Snap Shot Score efficiently reveals ef-
fective connectivity (over a range of time-lags) between
recorded units and thereby offers a new perspective on
the data.

In general, collecting spike train data from a sys-
tem is insufficient to reconstruct structural connectivity
between units, as neurons are sampled with relatively
low spatial density. Even if data could be collected
from all neurons, their functional connectivity, i.e. their
correlated activity, does still not convey enough infor-
mation for an unambiguous decision on their causal
interactions (Fig. 1). A network representing functional
relationships is thus not an attempt to suggest structural
connectivity, but a visualisation aid for data analysis.
In order to be able to draw conclusions from such
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Fig. 1 Correlation does not imply causation: Networks visual-
ising information flow between nodes from left to right with
different time-lags. Filled nodes are observable while the white
node cannot be observed. Mere correlation between observed
nodes cannot distinguish between alternatives: (a) hub-node
with connections of different time-lags, (b) homogenous time-
lags involving non-observed nodes, (c) chain structure among
observed units

a network, its semantic must be defined by an un-
derlying model. Different model types might favour
different kinds of connectivity pattern; for example,
tree-like (Fig. 1(a)), chain-like considering hidden units
(Fig. 1(b)), or chain-like structures among observed
units only (Fig. 1(c)). Choosing any pattern preference
reduces ambiguity of good explanations (i.e. networks)
for the data, such that they become more consistent.
The model type also determines the interpretation of
networks; for example, links might represent cause-
effect relationships. Neuron models according to the
integrate and fire paradigm (Stein 1965; Abbott 1999)
contain such cause-effect relationships, which renders
corresponding networks easily interpretable. Connec-
tivity suggested by the model might differ from the
actual anatomical connectivity and is thus called effec-
tive connectivity (Friston 1994; Sporns et al. 2004). The
method introduced in this paper implicitly uses a causal
model to reveal effective connectivity from spike train
data.

To date, extra-cellular neural recordings can only
be made from a fraction of neurons in the neural
system, such that most neurons remain hidden units
with respect to the recorded data. The predominant
number of non-observed units affects the detection of

functional and effective relations: Observed units, con-
nected by unobserved chains, can show dependence
over different time-lags depending on the length of
the connecting chain. This is commonly taken into
account by analysing relationships for a series of dif-
ferent time-lags; in contrast, the technique presented
in this paper accounts for multiple time-lags simulta-
neously. Our method favours connectivity patterns for
which responses are explained by short time-lags, but
it will also suggest connections with larger time-lags if
they explain the data significantly better. This reflects
Occam’s razor (Madigan and Raftery 1994) as an ac-
cepted model selection criterion, when direct (short
time-lag) connections are considered to be simpler than
indirect (long time-lag) connections. The range of time-
lags considered by our method can be adapted to suit
the specific characteristics of the data.

Different analysis techniques for constructing neural
information flow networks from neural electrophysio-
logical data exist (Brown et al. 2004). (See Table 1 for a
classification of analysis methods.) These methods can
be categorised according to how they use the data: as
spike times or transformations to the frequency do-
main. Spike time methods utilise the full precision of
spike train data, while frequency methods smooth out
minor variations. Some methods of either category av-
erage over multiple trials (and thus require several re-
peated recordings under same conditions), while others
can be applied to single trial recordings. Additionally,
techniques differ in whether or not they require spike
trains of individual neurons. Methods fitting neuron
models to the data require single unit data (i.e. all
spikes on one channel originate from exactly one neu-
ron), whereas other approaches can handle non-spike
sorted multi-unit data (with outputs of multiple neu-
rons per channel). Some methods are restricted to the
analysis between pairs of channels and might thus fail
to pick up relationships that are conditional on more
than one channel; multivariate analysis techniques can
detect these complex patterns. Our new method aims
to combine the advantages of both spike time and
frequency domain methods, by using a mixture of these
concepts. It can reveal multivariate relationships and is
applicable to both single and multi-unit spike train data
without requiring multiple trial recordings.

2 The Snap Shot Score

In analogy to Hebbian learning (Hebb 1949, p. 62),
revealing an information flow network can be sum-
marised as: cells that fire together, shall wire together.
Discovering, or learning, such a network with our
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Table 1 Classification overview of techniques that can be used for inference of neural information flow networks from electrophysio-
logical data

Method (based on) Spike time/frequency Multiple trials Single-unit Multi-unit Analysis type
Joint Peristimuls Time Histogram Time ! ! " Pairwise

(JPSTH) (Gerstein and Perkel 1969;
Aertsen et al. 1989)

Cross-correlation (Perkel et al. 1967) Frequencya ! ! ! Pairwise
Information theory Frequencya ! ! " Multivariate

(Rieke et al. 1999; Borst et al. 1999;
Dayan and Abbott 2005)

Single neuron model Time " ! n/a Multivariate
(Dayan and Abbott 2005;
Makarov et al. 2005)

Gravity (Gerstein et al. 1985; Time " ! " Multivariate
Gerstein and Aertsen 1985;
Lindsey and Gerstein 2006)

Dynamic Bayesian Network Frequency (Hz) " n/a ! Multivariate
(DBN) (Smith et al. 2006)

Partial Directed Coherence (PDC) Frequency (Hz) " ! ! Multivariate
(Sameshima and Baccalá 1999;
Baccalá and Sameshima 2001;
Astolfi et al. 2006;
Takahashi et al. 2007)

Generalised Linear Model (GLM) Time " ! ! Multivariate
(Chornoboy et al. 1988;
Okatan et al. 2005;
Truccolo et al. 2005;
Pillow et al. 2008)

Granger causality Frequency (Hz) " " ! Multivariate
(Granger 1969; Cadotte et al. 2008)

Direct Transfer Function (DTF) Frequency (Hz) " " ! Multivariate
(Kaminski and Blinowska 1991;
Eichler 2006)

Snap Shot Score (SSS) Both " ! " Multivariate

Legend: ! required/intended use, " possible use, n/a not applicable.
aFrequency meant in terms of a frequentist’s probability estimate (Cox 1946). Sufficient amounts of data are required for these
estimates, although not necessarily multiple identical trials

method requires the assessment of many potential net-
works using a scoring function, which assigns a high
value to networks that give a good causal explanation
of the data and a low value otherwise. Links in the
learned network represent an excitatory influence of
the starting node on the destination node. If the number
of potential networks is sufficiently small, all of them
can be evaluated, but in general too many networks
exist to be evaluated exhaustively. In such cases, search
heuristics or Monte Carlo Markov Chain (MCMC)
methods can be used to select a subset of promising
networks to score. Any generic search method that
operates on a discrete search space is suitable for our
method. We refer the reader to the manifold literature
on such methods: greedy search (Cormen et al. 2001);
evolutionary algorithms (Bäck 1996; Ashlock 2004),
such as genetic algorithms (Whitley 1994) or parti-
cle swarm optimisation (Kennedy and Eberhart 1995;

Eberhart et al. 2001); and the large class of MCMC
methods: Metropolis-Hastings (Metropolis et al. 1953;
Hastings 1970), simulated annealing (Kirkpatrick et al.
1983; Cerny 1985), and Gibbs sampling (Casella and
George 1992; Robert and Casella 2004), for example.

The core of our method, the Snap Shot Score (SSS),
can account for relations over multiple time-lags. This
is achieved by converting each spike train with a low-
pass filter to an activity level series. All spike times are
preserved in the activity level series, and additionally—
in inter spike intervals—it is enriched by information
about past neural activity. The actual score values are
then calculated using both the spike trains and activity
level series, by taking snapshots of the activity level
at all spike times. In order to account for multivariate
relationships, i.e. situations in which an effect has more
than one cause, multiple activity level series need to be
joined before calculating the score. The mathematical
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description of our method follows next, followed by
interpretations and examples.

We consider spike trains of n channels being given
by the n-dimensional time series s = (sk,t)

k=1,...,n
t=1,...,T with

sk,t = 1 if a spike was detected at time t on channel k
and sk,t = 0 otherwise. We define corresponding activity
level series a = (ak,t)

k=1,...,n
t=1,...,T with

ak,t = max
j=0,...,t−1

sk,t− j − j · d (1)

for some decay constant d ∈ [0, 1]. Throughout most of
this paper we consider d = 3−1 such that the activity
level of channel k at time t is determined by sk,t, sk,t−1,

and sk,t−2, only.1 The further a spike occurred in the
past, the less influence it has on the activity level.
This is because the potential weight of a spike 1 − j · d
decreases as j, the number of time-lags into the past,
increases. Spikes in the more recent past (i.e. a smaller
j) or the present ( j = 0) have higher weight and thus
supersede any spikes that occurred earlier. This is due
to the maximum taken in Eq. (1). Any spike further
in the past (from time t) than #1/d$, the number of
time-bins it takes for activity to fully decay, does not
contribute at all to the activity level series (at time t):
Such spikes result in a negative value for 1 − j · d; thus,
any subsequent spike, or even current silence (0), would
be selected by the maximum.

The joined activity level series a(k1,...,km) of channels
k1, . . . , km is defined as the maximum over channels for
each time t:

a(k1,...,km),t = max
j=1,...,m

ak j,t . (2)

If m = 1, the joined activity level series (join) is thus
of a single channel. This join is identical to the activity
level series of that channel. We use the term activity
level series to identify both joins and activity level series
of single channels.

Definition 1 (Snap Shot Score) For a given pair (a, s)
of activity level series a = (at)t=1,...,T and a spike train
s = (st)t=1,...,T , the Snap Shot Score is defined as

SSS(a, s; ∆t) =
∑T−∆t

t=1 at · st+∆t∑T−∆t
t=1 at

(3)

1Other choices for the decay constant are possible: the smaller
d is chosen, the larger the range of time-lags considered for
detection of interrelations. Extreme values where d = 0 (activity
level constantly 1 once a spike occurred on the channel) or d ≈ 0
(activity decaying extremely slow) are unlikely to deliver sensible
results. We have chosen d = 1/3 to keep examples (Section 3)
expressive and clear. For real data, the decay constant can be
derived from the anticipated maximal causal lag (in time-bins)
or by using a parameter series as outlined in Example 3, later.

if
∑T−∆t

t=1 at &= 0, and 0 otherwise. The parameter ∆t ∈
N>0 is called the shift constant; it defines the minimal
time-lag with which causal effects are assumed to occur.
Throughout this paper we consider ∆t = 1, i.e. at least
one time step between a cause and its effect.

The SSS quantifies the excitatory effect of an ac-
tivity level series on a spike train (Fig. 2): The score
value is determined by spikes occurring within the lag-
window W defined by the inclusive boundaries min-
imal response-lag (= shift constant ∆t) and maximal
response-lag (=#d−1$ + ∆t − 1). Potential information
flow networks are assessed by identifying each data
channel with one network node. Every node is then
assigned a score value depending on the nodes linked
to it. Commonly, a link’s source node is called a parent
of the destination node (child).2 Using this terminol-
ogy, the child-node is scored by applying the SSS to
its spike train and the join of all parent-channels. A
node without any parents is also assigned a score value,
which requires the join a(1,...,n) of all channels. With the
child’s spike train s, the score of the parentless node
is SSS

(
a(1,...,n), s; ∆t

)
if this value is non-zero, and 1

otherwise. Finally, the score of the full network is the
product of all its nodes’ scores.

The SSS can be easily interpreted by dividing both
the numerator and denominator of Eq. (3) by T − ∆t
to render both terms time-averages, which can be un-
derstood as probability estimates; the left hand side is
then a conditional probability (Feller 1950), such that
Eq. (3) informally reads as:

P
(

spikes will follow,
given that activity is high

)

= P(spikes following high activity)

P(high activity)
. (4)

The model underlying the SSS assumes that the spike
trains are generated by a stochastic process Xt =(

X(1)
t , . . . , X(n)

t

)
, where each neuron’s future activity

depends on past neural activity, i.e.

P
(

X(i)
t+1

∣∣Xt, Xt−1, . . . , X0

)
. (5)

As discussed below, the SSS can be used to learn a
network, which gives more specific information about
the process Xt: First, dependencies over time are lim-
ited by the score’s lag-window W; secondly, parent-
child relations in the learned network describe which
subset of neurons pa(X(i)) was found to be relevant for

2A loop-link renders a node parent and child at the same time.
We will refer to such configurations as self-exciting.
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Fig. 2 Graphical interpretation of the Snap Shot Score. (a) Spike
trains for three channels. The channel on the bottom is ex-
cited by the upper two channels. (b) Activity level series
of upper two channels for given activity level decay (de-
cay constant d = 1/3). (c) Joined activity level series (join)
of upper two channels. (d) Snapshots of joined activity level
series taken at spike times of bottom channel corrected
by shift constant (∆t = 1). Normalising the snapshot-values(

2
3 + 1

3 + 1 + 1
3 + 1 + 2

3 = 4
)

by the accumulated joined activity
(
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3 + 1
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each neuron X(i), namely, its parents. Equation (5) thus
simplifies to

P
(

X(i)
t+1

∣∣pa(X(i))t̄∈{(t+1)−l | l∈W}
)

(6)

and describes the process Xt more concretely. Equa-
tion (6) does not imply one particular neuron model

in order to interpret learned networks. Instead, any
neuron model for which this process is a reasonable
characterisation can be chosen. This could, for instance,
be a leaky integrate and fire neuron, where the leakage
current is chosen such that temporal summation of
synaptic inputs only occurs over a time-window cor-
responding to the score’s lag-window W. Stochastic
dependencies in the resulting spiking process Xt would
then match Eq. (6). Changing assumptions about the
neuron model leads to a distinct understanding of the
network. The large number of possible models prevents
discussing all of them; we have thus chosen to present
an easily interpretable template model in which the
learned links between observed units stand for chains
of hidden units. The aim of this model is to give an
illustrative example of how to interpret recovered links;
we do not suggest it to reflect physical connectivity. The
model consists of the following assumptions:

– All neurons act as unreliable relay units, i.e. spikes
received through synaptic transmission are for-
warded to connected neurons with a certain prob-
ability.

– All postsynaptic potentials are excitatory, and syn-
aptic transmission takes one time-bin per synapse.

– Each recovered link between observable neurons
represents a connection between these neurons
via a number of synapses (connection length).
This number of synapses ranges from ∆t (min-
imal response-lag) to #d−1$ + ∆t − 1 (maximal
response-lag). The connections are formed by
chains of hidden units, one less than synapses in
the chain. For shift ∆t = 1 and decay constant d =
3−1 (as chosen before), there are 1 to 3 synapses
between connected units, i.e. observable neurons
either connect directly to each other or by up to 2
hidden units in between.

This descriptive model gives a simple interpretation
for links, which can assist in explaining features of the
SSS, particularly, the trade off between explanatory
power and model complexity. In this model, complexity
depends on both the number of links to a given node,
i.e. the number of neurons upon which a neuron’s firing
is dependent, and the length of connecting chains of
hidden nodes. Examples in Section 3 will demonstrate
how the SSS does not add additional parents unless the
explanatory power is sufficiently increased, and how
the SSS prefers parents that fire with minimal rather
than maximal response-lag, corresponding to shorter
hidden chains. Thus, the SSS aims at explaining the
dependence among (observed) units by linking them
using few and short connections.
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Learning an information flow network from data
generally involves scoring many potential structures.
Ideally, the highest scoring one would be found. Be-
cause of the score’s decomposability, the best scoring
network can be assembled from each node’s best scor-
ing parent configuration. Thus, full network scores need
not be calculated for learning, but it is sufficient to
determine each node’s optimal parent configuration.
In order to identify these with certainty, all 2n possi-
ble joins for each node would have to be evaluated.3

However, for practical dimensions (like a 60 electrode
array, for example), there are far too many joins for an
exhaustive evaluation. To circumvent this problem, the
set of information flow networks to score can be limited
to ones with sparse connectivity, or limits can be placed
on the number of parents per node. The number of po-
tential child-parent relations might also be reduced by
excluding connections ruled out by factual knowledge
(like large physical distance between electrodes, for
example). Additionally or alternatively, as mentioned
previously, search heuristics and Monte Carlo methods
can be used to select promising networks to assess
(Cormen et al. 2001; Bäck 1996; Ashlock 2004; Whitley
1994; Kennedy and Eberhart 1995; Eberhart et al. 2001;
Metropolis et al. 1953; Hastings 1970; Kirkpatrick et al.
1983; Cerny 1985; Casella and George 1992; Robert and
Casella 2004). Once dependencies have been revealed,
they can be visualised as a network (graphical model
(Airoldi 2007; Pearl 2000; Lauritzen 1996)), which con-
nects nodes associated with certain spike train channels
to indicate excitatory influence between the observed
units.

Network inference can be assisted by prior knowl-
edge about the studied system, which can be used
to derive a link-acceptance-threshold (LAT) for each
network node. Any parent configuration with a score
value lower than the child node’s LAT will be rejected.
This selection removes irrelevant links and can lead
to sparser, more relevant networks. The LAT reflects
the best explanation for the data at a particular level
of complexity. The actual level of complexity is deter-
mined by the prior information at hand: Knowledge
about the studied system constrains the space of poten-
tial parent configurations for each node. For example,
self-excitation might be excluded, or observed units

3Implementation note: Profiling implementations (in C
(Kernighan and Ritchie 1988) and Python (van Rossum
et al. 2009)) of our method revealed that calculating joins is
computationally much more expensive than calculating the SSS
value. Instead of recalculating a join for different nodes, we
suggest to perform scoring join-wise, i.e. scoring all nodes with a
join once it has been computed.

are known to only have few interaction partners. The
space of potential configurations can thus be restricted
to a particular level of complexity, i.e. number of par-
ents. Configurations at the highest permitted level of
complexity determine the LAT, which is the highest
score value of these configurations. This highest scor-
ing configuration (LAT-configuration) reflects the best
explanation for the data at a level of complexity, which
could not be limited further by using prior knowl-
edge (represented by the LAT-configuration). Better
explanations than the LAT-configuration might exist:
These are simpler configurations with scores equal to or
above the LAT. Calculating the SSS for several parent
configurations can reveal such superior explanations.
Ultimately, we seek to find the simplest among the best
scoring configurations consistent with prior knowledge.
Thus, any configuration with a score value below the
LAT should be omitted from result lists, as it gives a
worse explanation for the data than prior knowledge
(LAT-configuration).

3 Illustrative examples

To illustrate the functionality of our method, we discuss
a series of three examples. First, we clarify the nature
of the SSS by working out basic features of the score.
We then evaluate all possible parent configurations of
a node for different sample data sets and discuss the
score’s quantification of these. Finally, we apply the
method to data from neural network simulations, to
demonstrate its performance in complex scenarios. This
last example will also address how good parameter
setting of the SSS can be found in practice.

Example 1 (Snap Shot Score features) In order to il-
lustrate first basic features of the score, we consider
an unnatural data-set with 6 channels (Fig. 3(a)). We
calculated the activity level series (Fig. 3(f)) and scored
selected information flow networks (Fig. 3(b–e)); the
links of these networks were chosen to illustrate central
features of the SSS:

– The score value is zero if putative cause and effect
do not appear within the lag-window of minimal
and maximal response-lag:

[
∆t, #d−1$ + ∆t − 1

]
=

[1, 3] (Fig. 3(b)). This is especially true when effects
precede supposed causes (Fig. 3(c)). Note that in
Fig. 3(b, c, d), node B’s contradictory parent con-
figurations render the full networks inconsistent,
which is reflected by their zero score values.

– The score value is maximal if putative cause and
effect occur exactly at the minimal time-lag, and it is
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lower if effects occur later (Fig. 3(b)). The SSS thus
favours units as causal ones to which the response-
lag is minimal (Nodes D, E, F in Fig. 3(b) vs. 3(c)).

– Addition of more parents may get penalised by the
SSS: If higher complexity is not balanced out by
a significant explanation benefit, the score value
decreases (Nodes D, E, F in Fig. 3(c) vs. 3(d)).

– Different parent configurations can have the same
score value if spike trains are identical for dif-
ferent units (Fig. 3(e)). It is unsurprising that the
score cannot distinguish between alternative expla-
nations where different, but identical in spike train,
units are parents: Any unbiased method would be
expected to present such equivalent alternatives.
It is not optimal that the score cannot distinguish
between identical single units and their join: One
would rather penalise the multi-parent structure.
But, as we will discuss in the following example in
more detail, for realistic data, it is extremely un-
likely that two units have precisely identical spike
trains; it is thus extremely unlikely that several
networks are assigned the same high score value.

While the preceding example showed how the SSS
works for selected child-parent configurations, the fol-
lowing one illustrates how it operates on the full space
of parent configurations of one particular node. The
systems discussed are of low dimensionality in order
to be able to display results appropriately; systems
of higher dimensions will be discussed in Example 3,
later.

Example 2 (Exhaustive network space evaluation) To
illustrate the Snap Shot Score’s selectivity, we consider
different activity patterns (4 channels) and evaluate the
score of node 1 for all its possible parent configurations
(Fig. 4). We compare scores of individual configura-
tions against the mean score of all configurations for
illustrative purposes, only.4 Despite the low dimension-
ality of the depicted situations, several characteristics
of the SSS can be seen. For example, joining silent
channels has no effect on the score value: configura-
tions in Fig. 4(a) have the same score value whether
they contain the silent channel 4 as a parent or not.
Also, joining completely identical channels is effectless
compared to using only one of them (Fig. 4(b), channels
2 and 3). Both of these effects are due to the max-
operation in Eq. (2). More precisely, the score stays
unaltered if the activity level series of the channel

4Generally the mean score is unknown, because an exhaustive
evaluation is computationally impossible in practical dimensions.

to join does not raise the activity level any further
(Fig. 4(c), join of channels 1 and 2 equals channel 1).
This occurs in only three special cases: (1) joins of
identical spike trains, (2) joins where all spike trains
are a precise subset of one of the spike trains, and
(3) joins including silent channels. This is not optimal;
one would rather penalise the effectless complication of
a structure. However, this behaviour is a consequence
of the simplicity of the score. For real data, it seems
unlikely that identical spike trains, or spike trains that
echo precisely a subset of another, are observed on
different channels; thus, the first two special cases are
expected to have little effect in practical application.
The third special case can be handled by preprocessing
to remove inactive channels (as would be likely practice
in any case). Thus, in practice the SSS values are likely
to be different for every parent configuration (Fig. 4(a),
configurations 1–8). The different score values can be
used to order parent configurations hierarchically for
subsequent inspection and result selection.

In Fig. 4(a–c), the SSS assigns distinct top-scores to
its most favoured configurations. To grasp the score’s
characteristics for more variable data, the spike pat-
terns in Fig. 4 were concatenated in three different
ways to yield the spike trains shown in Fig. 5. Inter-
preting the resulting spike trains with respect to the
question “Which channels are exciting channel 1?” can
be harder or easier than before; the SSS values reflect
this: In Fig. 5(a), channel 1 seems to be clearly excited
by channel 2, as all parent configurations but one of
those including this channel have score values above
the mean. However, except from the clear peak for
configuration number 3, the score is high and undecided
about some others, especially configurations 7 and 11,
and configurations 4 and 5. The spike train does not
contain enough information to clearly prefer one of
these parent configurations over the other; we find high
scores approaching one standard deviation (SD) above
the mean for all four configurations. A similar situa-
tion occurs in Fig. 5(b): One configuration is clearly
favoured, too, but high scores (about one SD above the
mean) are reached by only two other configurations.
The spike train in Fig. 5(b) is thus more expressive to
the SSS than the preceding one (Fig. 5(a)).

Score value peaks become flat when the data con-
tains unclear information: In Fig. 5(c) spikes on chan-
nels 2, 3 and 4 all occur as favoured (with time-lag
1) once, but also with larger lags another time. We
find the prominence of the top configuration number
5 less distinct than in other cases and the overall score
distribution close to the mean score. More informative
data would be needed for the formation of a distinct
peak; indeed, repeating one of the two spike patterns
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# Fig. 3 Simplistic spike trains and SSS values of selected networks
(left), activity level series used for scoring and detailed calcula-
tion example (right). (a) Spike trains of 6 units (A-F). (b–e) Snap
Shot Score values shown for selected parent-child configurations
(near child nodes) and for full networks (

∏ = . . . next to net-
work). (b) Unit A is single parent of all other nodes. Scores of
nodes B and F are zero, as these units do not respond within
the defined time-lag-window: Unit B undershooting minimal
response-lag (∆t = 1); unit F overshooting maximal response-
lag (#d−1$ + ∆t − 1 = 3 time-steps). Decreasing non-zero scores
of nodes C through E reflect the Snap Shot Score’s preference
of short time-lags. (c) Unit C is single parent of all other nodes.
Scores of nodes A and B are zero, as their response undershoots
the minimal response-lag: Links C → A and C → B are directing
backwards in time. Scores of nodes D, E, and F are larger for
parent node C than for parent node A (b), as their response-
lag to unit C is smaller than to A. (d) Units A and C are joined
parents of nodes B, D, E, and F. All non-zero scores are smaller
than those where unit C is the only parent (c); the explanatory
benefit of two parents (A and C) does not balance out raised
complexity of the network. (e) Nodes A or B are parents of
node C either exclusively or jointly; a chain is formed of C to D
to E to F. For the data in (a), these three resulting networks
are the best scoring ones. Their structure differs with respect to
the parent configuration of node C, but links between nodes C
to F are unambiguous. (f) Activity level series of all units (top)
and joins a(A,B) of A and B, and a(A,C) of A and C, respectively
(bottom). Join a(A,B) is used in (e) and equals individual activity
level series of A and B. Join a(A,C) was used to calculate scores
in (d). (g) Detailed score calculation for node F with parents A
and C as shown in (d)

(Fig. 4(b, c)) in the concatenation twice already leads
to fewer and more distinctly favoured configurations
(not shown).5 In both Figs. 4 and 5, even numbered
configurations include node 1 as its own parent; for
configuration number 2, node 1 is its only parent.
This exclusive self-exciting configuration can have non-
zero score values when two spikes on channel 1 occur
close enough to each other, i.e. within the lag-window
(Figs. 4(c), 5(c)); any two spikes that are too close
or too far apart do not contribute to the score value
(Fig. 4(a, b)). If (exclusive) self-exciting configurations
seem implausible for the single-unit spike train data,
they should not be considered.

In the final example, we assess the performance of
our method by using simulated data to demonstrate
its potential and value for learning effective connec-
tivity networks in practice. We begin the example by
introducing a plausibility concept to assess any network
inference technique under partial observability condi-
tions. We apply this concept to the SSS to show its
performance in a series of different situations.

5For independent random spike trains, SSS values of all parent
configurations lie within mean ± SD and approach mean score
(SD ↘ 0) for increasing length of spike trains (not shown).

Example 3 (Neural network simulations) To indicate
how the SSS performs in more realistic situations, we
simulate a feed-forward network (Fig. 6(a)) with an
integrate and fire model (see Dayan and Abbott (2005,
p. 162) or Gerstner and Kistler (2002, chapter 4.1) for
example) and learn information flow networks from
the simulated data. The neural simulation was set-up
as follows: Neural baseline activity is given by uncor-
related homogeneous Poisson processes (Feller 1950,
p. 446). For different simulations, the rate parame-
ter was varied (λ = 10−1, 15−1, 25−1, 30−1, 40−1, 50−1),
corresponding to level of spontaneous spiking activity.
Spikes propagate according to the network connectivity
(Fig. 6(a)) with a delay of one time-bin (1 ms) per
link. Each neuron integrates spikes received from its
parents over time; the synaptic efficiency was varied to
allow 2, 3, 4, or 5 received spikes to evoke a spike in
the receiving neuron. In each simulation, all neurons
are stimulated by uncorrelated activity of equal rate;
synaptic efficiency is equal for all neurons. Every such
parameter combination was simulated 10 times for dif-
ferent data lengths (5, 10, and 30 s, 1, 5, and 10 min).
In accordance with practical situations, we assume that
the simulated system is not completely observable, and
only spike trains from a subset of units (observable
nodes) can be collected and used for learning. Learned
networks only contain links between these observable
nodes, such that their quality cannot be determined by a
simple link-by-link comparison with the full network, in
which many observable nodes are connected via hidden
ones. We therefore analyse the full network in order
to classify each possible link between observable nodes
as plausible or implausible. For this classification, we
introduce a concept of (link) plausibility, which is not
restricted to use with the SSS, but can be used for the
assessment of any network learning technique using
neural network simulations. The general idea of the
concept is to determine plausibility of any link between
observable nodes from the known simulated network.
For example, plausible links can be ones which exist in
the full network (e.g. 21 → 25, 23 → 27, and 27 → 32)
or certain links for which a directed path from the link’s
starting node to its end node exists (e.g. 3 → (7) → 13,
13 → (17) → 21, and 23 → (28) → (33) → 38).6 Links
that contradict the full network by connecting nodes
in the opposite direction of information flow in the
feed-forward network (e.g. 13 → 3, 21 → 3, and 35 →
3) are implausible, for example. The system’s partial
observability can lead to plausible links for which no

6Start- and end-nodes underlined, nodes on path in full network
(given for illustration) italic, hidden nodes in brackets.
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Fig. 4 Spike train patterns
and activity level series (left)
and corresponding Snap Shot
Score values of channel 1 for
all its possible parent
configurations (right). Spikes
are indicated by grey bars
with superimposed lines
indicating the resulting
activity levels. The adjacent
bar plot shows the score
values of all possible parent
configurations for node 1
(parent nodes given above
each bar). Mean score value
and mean plus/minus one
standard deviation (root
mean square) shown by
dashed lines for illustrative
purposes. Bars indicating the
score values are coloured
light grey if below the
link-acceptance threshold
(score of most complex
configuration 16) and dark
grey otherwise. (a) Channel 4
silent; joining it has no effect
on SSS value. (b) Channels 2
and 3 identical; joining more
than one of them has no
effect on SSS values.
(c) Close spikes on channel 1;
self-exciting configuration
(number 2) with positive SSS
value
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Fig. 5 Exhaustive score
evaluations of all parent
configurations for channel 1
with same semantics as in
Fig. 4. Spike train patterns
are concatenations of spike
patterns in Fig. 4 ((a) Fig. 4
(a, b), (b) Fig. 4(a, c),
(c) Fig. 4(b, c)). a Distinct
peak and four parent
configurations with score
value close to mean plus one
SD. (b) Distinct peak and two
parent configurations with
score value close to mean
plus one SD. (c) Score value
of most configurations close
to mean score and vague
peak only
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directed path between nodes exists: A common trigger
can cause co-ordinated firing between nodes, which are
connected via the triggering node only (e.g. 6 ← (2) →
(5) → 11). A link connecting the two co-ordinated
nodes is thus plausible if one node could fire within
the plausible lag-window [lmin, lmax] of the other node
(in the right order). Plausibility of a link thus depends

on the full network, which nodes are observable, and
parameters specifying the minimal and maximal plausi-
ble lag (lmin, lmax). This is formalised in the following

Definition 2 (plausibility) Let a and b denote two ob-
servable nodes. Node a is called a plausible parent of b
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Fig. 6 (a) Simulated feed-forward network (38 nodes, 47 links)
with observable units (14 nodes ≈ 36.8%) shaded in grey and hid-
den units unshaded. (b) Observable nodes from network shown

in (a) with all 34 plausible links (≈ 18.7% out of 182 possible
links) for plausible lags lmin = 1 and lmax = 3

if there exists a node s (in the full network) for which
directed paths to both a and b exist such that:

1. their lengths7 l(s → a) and l(s → b) fulfil lmin ≤
l(s → b) − l(s → a) ≤ lmax, and

7A series of directed links is called a path, if the origin of all
links equals their predecessors’ destination. Length l(a → b) of
directed path from node a to b is defined as number of links
on path. The length of a path a → b directly corresponds to the

2. if the path s → b includes a, none of the nodes
visited after a fulfils the first condition.

Node a is called an implausible parent of b otherwise.
The link a → b is called (im)plausible whenever a is
a(n im)plausible parent of b .

time-lag a signal needs to propagate from a to b . In our neural
simulation, the time-lag in time-bins (1 ms) is equal to the length
of a path.
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The first condition in the definition assures that de-
pendence between nodes a and b can arise within the
plausible lag-window. The second condition refines the
set of plausible parents by rejecting those for which
the relationship can only propagate through another
plausible parent of b . (For example, for (lmin, lmax) =
(1, 3), the link 23 → 27 → 32 fulfils the first but not the
second condition. Comments on the generic concept
of plausibility can be found in the last paragraph of
this example.) We used an algorithmic implementation
(Algorithm 1) of the definition in order to analyse the
full network (Fig. 6(a)). Throughout this example, the
plausible lags are chosen (lmin, lmax) = (1, 3) to deter-
mine all plausible links (Fig. 6(b)). We have chosen
lmin according to the minimal lag between observable
nodes in the full network and lmax such that a modest
percentage of links will be plausible.8 In this setting,
the plausible lag-window and the lag-window of the
SSS are both [1, 3]. This matching is expected to yield
the best results because links in learned networks only
connect nodes with appropriate time-lags: ones within
the SSS lag-window. As the lag-windows are identical,
all links that are plausible could be learned, but not
those spanning over time-lags outside the plausible lag-
window. To show that the performance of the SSS does
not depend on this matching, we will vary the decay
constant d (and thus the lag-window) later. We will
also account for the fact that the probability of finding
plausible links by chance depends on their percentage.
(See P-value calculation below.)

We ran several series in which both the parameters
of the neural simulation and the score were altered
systematically in order to assess their influence on
the quality of the recovered networks. (The full net-
work, observable nodes, and plausible links were left
unaltered.) For each parameter combination, the full
network is simulated with an integrate and fire model
to yield spike train data. Data channels corresponding
to observable nodes are then used to determine each
node’s best scoring parent configuration with no more
than 3 parents. Composing these parent configurations
yields the recovered network, which is analysed with
respect to its plausibility: Links of learned networks are
classified as either hit or miss, depending on whether
they are plausible or not (respectively). We then deter-
mined the recovery rate (the percent the hits represent

8For lmin = 1 there exist 12 (≈ 6.6% out of 182 possible links,
lmax = 1), 27 (≈ 14.8%, lmax = 2), 34 (≈ 18.7%, lmax = 3), 37 (≈
20.0%, lmax = 4) plausible links.

of all possible plausible links [Fig. 6(b)]),9 precision (the
percent of all the recovered links that are hits), and
the corresponding P-value using the hypergeometric
distribution (Feller 1950, p. 43).10

The performance of the SSS is compared to that of
cross-correlation (Perkel et al. 1967), which results in
comparable computational costs. In order to account
for different time-lags in the cross-correlation analysis,
the correlation between any two channels A and B has
been evaluated from time-shifted data: shifting B’s data
forward (relative to A) by 1, 2, or 3 time-bins. The max-
imal correlation between channels was then assigned to
the corresponding link A → B. Links with maximum
correlation equal or above a threshold α are learned;
all remaining ones are not. In practice, the threshold α

would have to be chosen by the user, which is not
possible for the large number of simulations performed
here (1,440 simulations). Instead, for each analysed
data-set, the threshold has been chosen to yield opti-
mal performance: According to the Neyman-Pearson
Lemma (Neyman and Pearson (1933) or Dayan and
Abbott (2005, p. 119)), no better choice for α exists
than the one which yields the highest likelihood-ratio
(i.e. recovery rate / [100 – precision]). The threshold α

is chosen according to this optimal trade-off and thus
yields the best performance that can be reached with
this technique.

Parameters of the neural simulation (spontaneous
activity level, synaptic efficiency) do not have any phys-
ical correspondence in this sparsely connected network;
we refrain from showing their individual influence on
network inference, as their combined effect is fully
reflected in the simulated spike train. Instead, the sim-
ulation output, the spike train, is characterised by the
amount of information it contains about the network:
Uncorrelated Poisson spike trains that were used to
stimulate network activity do not convey any informa-
tion about the structure of the network; only spikes
that were induced by post-synaptic potentials provide
information about network connectivity. Therefore,
each spike train is characterised by quantifying the

9Note that the definition of the recovery rate corresponds to
sensitivity. We have called it differently because we do not expect
the recovery rate to reach 100% (as is explained in the text later),
which the reader might assume if confronted with the familiar but
misleading term sensitivity.
10The chance level for at least h hits out of p plausible links out
of N total links with k links learned is

∑min{p,k}
i=h qi, where qi =

(p
i )(

N−p
k−i )

(N
k)

.
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Algorithm 1  Determination of all plausible links (Definition 2) for a partially observable
network. The algorithm begins with preliminary determination of reachability sets for each
node. These consist of all nodes to which a directed path exist. The main loop then imple-
ments Definition 2 in two steps: First, potential plausible parents are determined; these are
observable nodes, which fulfil condition 1 in the definition. In the second step, condition 2
of the definition is checked, and nodes violating the condition are removed as potential plau-
sible parents. The remaining nodes fulfil both conditions of plausibility and are returned in
the end.

Input: Full network, observable nodes
Parameters: minimal and maximal plausible lag (lmin lmax),

for all nodes si do
determine the reachability set Ri of all nodes that can be reached from si via directed paths; Ri si if
si isolated node without any links

end for
for all observable nodes o do

(First determine all nodes ppao that fulfil condition 1 of definition 2)
initialise its plausible parent set ppao : /0
for all nodes si where o Ri do

for all nodes pa Ri do
if paths si o si pa with, lmin l si o l si pa lmax exist then

ppao : ppao pa
end if

end for
end for
(Remove all nodes from ppao that do not fulfil condition 2 of definition 2)
for all parents pa ppao of node o do

if paths pa o pa x1 xk o :, , ,, . . . , ,. . .ppao x1 xk /0 then
ppao : ppao pa

end if
end for

end for
return all plausible parent sets ppao

proportion of externally induced spikes and evoked
ones. Evoked spikes increase the total number of spikes
(i.e. stimulating and evoked ones), and we call the per-
cental increase the simulated system’s impetus.11 When
the impetus is low, the data is similar to the uncor-
related stimulation spike trains (representing inherent
spontaneous activity of model neurons or excitation
originating from un-modelled units). A higher impe-
tus indicates a more autonomous system with higher
self-dynamics. In such systems, the spike trains are
more informative about network connectivity, which is

11The impetus = 100 · #evoked spikes/#stimulating spikes where
number of evoked spikes = #spikes in simulation output −
#stimulating spikes. If, for example, impetus=0%, then no spikes
were evoked by the stimulation and the simulation output is
equal to uncorrelated random spike trains. For impetus=100%,
the simulation output is a mixture of two halves: stimulation
spikes and evoked spikes.

expected to improve network recovery. The impetus
was determined for every data set used for network
learning in order to show its effect on the performance
of our method. We note that the impetus cannot be
calculated for real data; its purpose is purely to provide
a scale for the informative value of spike trains in the
simulation. Knowing the impetus for real data would
be useful to relate the results of our simulations to the
quality of networks learned from these data. However,
experimenters can only estimate the impetus for their
data roughly. For example, recordings within a feed-
forward type structure are expected to exhibit a higher
impetus than from an area with many converging exter-
nal inputs.

In simulation series, we observe the expected re-
lation between quality (impetus) and amount of data
(length of spike train) and the grade (recovery rate,
precision) of networks learned from the data (Fig. 3): In
order to learn networks of a certain grade, a lower im-
petus can be compensated by longer recordings; longer
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$Fig. 7 Quality of recovered networks depending on impetus and
recording length (d = 3−1, ∆t = 1 fixed). Data points represent
one learned network each; trend lines fitted to points of each
data-length. Average values of the SSS, ∅SSS, of three impetus-
regions low, medium, and high (indicated by curly brackets) given
above/below data points. For the correlation approach, no data
points are shown, but these are summarised in the corresponding
average values ∅cor . (a) Recovery rate of all plausible links for
different impetuses and different lengths of data. Higher impe-
tuses and longer data sets result in better recovery rates. Longer
data sets can compensate for lower impetuses. (b) Precision of
recovered links for different impetuses and different lengths of
data. High impetuses and longer recordings improve precision.
Longer data sets can compensate for lower impetuses. (c) P-
values of precision shown in (b) on logarithmic scale. Networks
with a higher precision are less likely to be revealed by chance.
Lower P-values thus indicate better performance

recordings at a fixed impetus generally improve the
quality of the learned networks; and, for a particular
data length, recovered networks are generally better for
higher impetuses, i.e. more informative data.

To understand why the recovery rate does not ex-
ceed 35% for any learned network (Fig. 3(a)), we note
that not all of the links that are classified as plausible
are expected to be recovered. This is because, gener-
ally, some redundancy among them exists; for example,
in Fig. 6(b) links 20 → 29, 21 → 29 are both plausible,
but given the joint excitation of nodes 20 and 21 by
unit 16, they might be similar enough such that one of
them is sufficient to explain spiking of unit 29. The set
of plausible links is therefore a superset of those that
are expected to be revealed by network inference. Out
of this superset, the SSS predominantly recovers links
that connect nodes and their closest plausible parent,
but not more distant ones. (This can be explicitly seen
in Fig. 9, which will be discussed later.) Additional
plausible links that do not sufficiently increase the ex-
planatory quality of the network are omitted due to the
SSS’s preference for simpler networks.

In contrast, the precision would optimally reach
100%, such that all recovered links are indeed plau-
sible. Fig. 3(b) shows the relationship between impe-
tus and precision, which is high when the impetus is
high. Reaching such precision by chance is extremely
unlikely (Fig. 3(c)); however, at lower impetuses, the
percentage of learned links that are implausible in-
creases and causes precision to drop down, as is to
be expected. For the lowest range of impetuses [0–
20], cross-correlation (on average) yields better preci-
sion than the SSS. However, for higher impetuses as
well as for P-values and recovery rates, the SSS shows
equal or better performance than cross-correlation (for
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which the threshold α has been chosen to yield optimal
results).

We used the same framework to investigate the
robustness of learning performance for a fixed data
length with respect to different choices for the decay
constant. The corresponding results are depicted in
Fig. 8. Excluding the extreme case d = 1, we find all
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Fig. 8 Quality of recovered networks depending on impetus and
decay constant (recording length 30 s, ∆t = 1 fixed). Data points
represent one learned network each; trend lines fitted to points of
each choice of decay constant. (a) Recovery rate of plausible links
for different impetuses and choices of decay constant d. Decay
constants d ∈ {5−1, 4−1, 3−1, 2−1} result in similar good recovery
rate. Significantly worse recovery rate for decay constant d = 1
due to inability to consider dependence over multiple time-lags.
(b) Corresponding precision for impetuses and decay constants
shown in (a). As in (a), performance is similar for decay constant
d ∈ {5−1, 4−1, 3−1, 2−1}, but worse for d = 1 (for the same rea-
son). (c) P-values of precision shown in (b) on logarithmic scale

settings performing similarly well over a range of im-
petuses. Setting d = 1 results in a significantly worse
performance, as the resulting lag-window [1, 1] causes

$Fig. 9 Average of networks learned for data of fixed length (30 s)
and similar impetuses (≈ 30%), using different decay constants
(d ∈ {5−1, 4−1, 3−1, 2−1, 1}). Links that can be found in at least
30% of learned networks (for each choice of d) shown with
percental frequencies on link. Plausible links are marked bold
(Fig. 6(b)). (a) (d = 1) Except for one link (13 → (18) → 23),
the only plausible links recovered are those with lag 1. The
decay constant is not small enough to capture dependence over
larger time-lags. (b) (d = 2−1) Good recovery of plausible links
with lags 1 and 2. Link 13 → (18) → 23 recovered with higher
percentage than in (a). (c) (d = 3−1) Similar recovery of plau-
sible links as in (b), but different implausible links (recovered
in ≥ 30% of networks) due to wider lag-window. (d) (d = 4−1)
Similar recovery of plausible links as in (b) and (c), but more
implausible links (recovered in ≥ 30% of networks) than in (b)
and (c). (e) (d = 5−1) Plausible links recovered as in (b–d) plus
link 25 → 38, but different implausible links than in (a–d). The
differences among implausible links in (a–e) indicate that they
are learned from spurious relationships over different time-lags.
(f) (d ∈ {5−1, 4−1, 3−1, 2−1, 1}) Average over all networks (a–
e) shows good recovery of plausible links. Several implausible
links learned from spurious relationships average out (frequency
below 30%)

the SSS to find relationships of lag 1 only. Links with
larger time-lags (e.g. 3 → (7) → 13, 13 → (18) → 32,
and 23 → (28) → (33) → 38) can thus only be found
through spurious firing with time-lag one. This limita-
tion accounts for the comparatively low performance
of this setting.

Realistic situations may allow for only a few record-
ings of the studied system under similar conditions.
We mimic this situation by simulating 10 data sets of
30 s in length, each using the same simulation pa-
rameters, such that all spike trains exhibit about the
same 30% impetus.12 For each of the 10 data sets,
five networks were learned, one for each decay con-
stant d ∈ {5−1, 4−1, 3−1, 2−1, 1}, ∆t = 1. For each decay
constant, the networks from the 10 data sets were
averaged. We find the earlier observations (Fig. 8)
confirmed: On average, networks learned with decay
constant d = 1 contain fewer plausible links than those
learned with smaller decay constants (Fig. 9(a) vs. 9(b–
e)). Independent of the decay constant, implausible
links show lower percentages of recovery than plau-
sible ones (Fig. 9(a–e)). Furthermore, most plausible
links are recovered consistently, while implausible ones
vary for different decay constants (Fig. 9(a–e)). In
order to account for links learned from spurious

12The data sets sum up to a total recording time of 5 min. The
impetus was found between 29.7% and 30.0%. For an impetus
of 30%, the simulation output consists of 3 evoked spikes per
10 uncorrelated stimulation spikes (on average).
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relationships, we averaged over all learned networks
(d ∈ {5−1, 4−1, 3−1, 2−1, 1}); this reduces the frequency
of implausible links significantly, while preserving plau-
sible ones with high percentages (Fig. 9(f)).

We refrained from running series to increase the
shift constant ∆t, as the structure of the simulated net-
work (Fig. 6(a)) and its implementation as a dynamical
system directly suggest ∆t = 1 to be the optimal choice.
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Fig. 9 (continued)

For real data, the shift constant is best chosen based
on the investigator’s expectation about the minimal
response-lag over which relationships may occur; for
example, electrode placement (close to each other /

in different brain regions) during data recording may
suggest smaller or larger time-lags. Expressing the ex-
pected time-lag as number of corresponding time-bins
in the spike train yields the optimal shift constant.
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In this simulation example, we find the SSS per-
forming well for a large range of impetuses irrespec-
tive of (non-extreme) choices for the decay constant.
This parameter insensitivity is important for practical
applications where doubts about parameter settings
exist. In such situations, our simulation results suggest
a potential approach for analysis: A fixed shift-constant
∆t needs to be chosen (as described above) and should
then be used together with a series of decay constants d
(as seen in the example). For each of these parame-
ter combinations, networks need to be learned. The
decay constant should be gradually decreased, until a
further decrease does not lead to substantial differences
in learned networks. This result stabilisation indicates
that the decay constant is sufficient, as the resulting
lag-window is wide enough to capture all relevant de-
pendencies. Practically, the average of learned net-
works can indicate which links are consistently found
(Fig. 9(f)). The largest decay constant for which (most
of) these links are learned is optimal. (A decay of d =
1/2 would thus be a reasonable choice for Fig. 9.) In
conclusion, parameters in practical application can be
determined in three steps: First, based on the experi-
menter’s knowledge, the shift constant ∆t is selected. In
doubt, ∆t should be chosen smaller rather than larger in
order to prevent ignoring relationships with short time
lags. In the second step, networks are learned from the
data using a series of decay constants d. Finally, the
learned networks are analysed and compared with re-
spect to each other, in order to infer the optimal decay
for which the width of the lag-window will be minimal,
but sufficient to represent identified relations in the
data. As discussed before, the shift- and decay-constant
determine the interpretation of learned networks.

We would like to emphasise again that the classifica-
tion of links as plausible or implausible is not restricted
to be used for assessment of the SSS. The formalised
concept of plausibility can generally account for situ-
ations where partial observability results in (multiple)
causal explanations that do not match the full
network; such explanation is plausible if it is consis-
tent with the full network. The presented idea can be
used for simulation-based assessments of any recovery
method under conditions of partial observability. We
see two important advantages in using the plausibility
approach: (1) The formal specification about expected
results is independent of subjective classification of
links, and (2) The algorithmic implementation of the
concept facilitates a fully automatic assessment process
of many different networks. Both points arise from the
fact that the plausibility approach minimises manual
interaction in the assessment of results. Because it is
neither specific to the simulated neuron model nor the

technique used to reveal networks from data, it can thus
be used for large scale comparisons between different
methods.

4 Discussion and conclusions

In this paper, we presented a novel analysis method for
multi-channel spike train data, which can detect sto-
chastic relations over multiple time-lags. Simulations
were used to demonstrate the method’s ability to cope
with different impetuses of the studied system. In com-
parison to an optimally performing cross-correlation
analysis over different time-lags, the SSS showed
superior performance in most cases. Examples have
demonstrated the SSS’s preference of short and few
connections. However, modifications of our method
can change the preferred connection type. For example,
changing the activity level calculation13 can alter the
score’s preference of connection lengths (e.g. prefer-
ring moderately long connections over both longer or
shorter ones). Accordingly, changing the join-operation
by replacing the maximum function in Eq. (2) with
the minimum or average of inputs, for example, affects
the favoured integration of multiple inputs (maximum:
logical or; minimum: logical and; average: mean). The
diversity of potential modifications indicates that the
SSS can be adapted to other time series data as
well (e.g. calcium imaging (Stosiek et al. 2003), fMRI
(Jezzard et al. 2001; Matthews and Jezzard 2004), EEG
(Nunez and Srinivasan 2007)). However, we do not
discuss such adaptations in this paper.

In the special case d = 1, ∆t = 1, activity decays
completely within one time-bin, such that the activ-
ity level series equals the spike train it is calculated
from. The lag-window W is thus of width 1, rendering
the process Xt describing the spike trains a 1st order
Markov process, such that Eq. (6) reduces to

P
(

X(i)
t+1

∣∣pa(X(i))t

)
. (7)

In this special case, the SSS can be related to an-
other network learning approach: Dynamic Bayesian

13Activity level series correspond to rate-limited firing rate se-
ries that were computed using a causal kernel. A causal kernel
function f satisfies supp( f ) ∩ R<0 = {x ∈ R| f (x) > 0} ∩ R<0 = ∅
(Dayan and Abbott 2005, p. 14). Such a kernel does not make use
of information gained in the future. The activity level of channel
k at time t is given by ak,t = ∑

j=0,...,t f (t − j · sk,t− j) .
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networks (DBNs) restricted to 1st Markov order
can encode such dependencies (Murphy and Mian
1999; Ghahramani 1998; Murphy 2002). Increasing the
Markov order of DBNs raises computational costs for
learning such networks, whereas a widened lag-window
does not affect the costs of our method. However, it
is only in the special case (d = 1, ∆t = 1) where the
nature of resulting networks from both approaches
match.

DBN learning approaches have been applied to bi-
ological data of different kinds, e.g. gene expression
profiles (Murphy and Mian 1999; Friedman et al. 2000;
Perrin et al. 2003; Kim et al. 2004; Zou and Conzen
2005), fMR images (Junning Li and McKeown 2006;
Li et al. 2007; Rajapakse and Zhou 2007; Rajapakse
et al. 2008; Burge et al. 2009), and also neural electro-
physiological multi-unit data (Smith et al. 2006). So far
the only publication of which we are aware applying
DBNs to (simulated) spike train data is Eldawlatly
et al. (2008), who used a coarse representation of 3 ms
time-bins for the data. We speculate that the sparsity
of DBN learning approaches applied to spike trains is
due to the scoring functions that are commonly used
(e.g. the Bayesian Dirichlet (BD) score (Cooper and
Herskovits 1992; Heckerman et al. 1995), Bayesian
Dirichlet equivalence (BDe) score (Heckerman et al.
1995), or the minimal description length (MDL) (Lam
and Bacchus 1994), which is equivalent (Friedman
1997) to the Bayesian information criterion (BIC)
(Schwarz 1978)). These scores are not specifically
adapted to any data-type, i.e. states of variables do
not possess any semantics and are thus treated equally.
This can be problematic for their application to spike
train data, as inspection of the BD scores shows: These
scores favour parent-child relations for which parents’
states are good predictors of the child’s states most
of the time (irrespective of their semantics). The
enormous imbalance in the number of spiking to non-
spiking bins can cause the BD scores to favour parent-
child relations for which the non-spiking of the parents
can predict non-spiking of the child; occasional spikes
are basically ignored, as they are clearly outnumbered.
In practice, this causes search heuristics to deliver
unstable results (unpublished observations using the
BDe score). However, this is neither a failure of the
search heuristic nor the scoring function, as can be seen
in the most extreme situation where all variables are
constants: Any combination of parents pa(X(i)) can
then be used to predict X(i) in Eq. (7) equally well.
For neural data with rare spike events—appearing to
be nearly constant—it is thus likely that several equally
high scoring networks exist, although their connectivity
might substantially differ. Therefore learning DBNs

from single unit spike train data may require a scoring
function which is particularly adapted by accounting for
the semantics of states and weighting them accordingly.
While the model underlying the BD scores is fixed, the
MDL principle (or BIC equivalently) can be applied
with a variety of paradigms. It thus seems likely that
they can be adopted to data with low spiking rates in
order to infer DBNs.

The SSS has been specifically designed for spike
train data and assigns high score values to networks if
parent nodes’ spikes are good predictors of child spikes.
In detail: High scores are assigned to parents whose
spikes precede those of the child reliably with the right
timing — at the beginning of the lag-window. How well
the timing matches is determined by snapshots of the
parents’ activity level, which are normalised in order to
control for random matchings due to constantly high
activity of the parents. Periods in the data in which
neither the child nor its parents show any activity do not
affect the score value. This is because (1) no snapshots
are triggered and (2) a zero activity level does not affect
normalisation. Thus, spiking and non-spiking bins in
the data are distinguished, and this enables the SSS
to account for low spiking rates and the biological
significance of action potentials. The design of the score
further places emphasis on computational efficiency, in
order to facilitate evaluation of large data-sets of higher
dimension, as is required in practical application. The
score can be used to learn DBNs or dependencies like
shown in Eq. (6) at the same computational cost. The
revealed stochastic relations are visualised as excitatory
causal networks to assist the interpretation of the data.
Such a method would be useful for other neural time
series data types as well and, as indicated earlier, mod-
ifications to the activity level calculation could render
an appropriate adaptation of the SSS possible.

Further research is needed to fully investigate the
score’s characteristics and potential usage. In particu-
lar, neural simulations of different network topologies
and scales are necessary to picture and understand the
score. Additionally, it will be interesting to see how
the SSS concept can be harnessed for the detection of
inhibitory effects; likewise, it might prove useful for
synchrony detection. In order to apply the SSS to differ-
ent types of time series data, adequate transformation
of these data to activity levels and snapshot triggers
need to be developed. Future work will address these
questions.

The Python (van Rossum et al. 2009) implementa-
tion of the SSS is available for download as supple-
mentary information from the web-site http://biology.
st-andrews.ac.uk/vannesmithlab. In the future, the
method will also be provided as a web-service on the

http://biology.st-andrews.ac.uk/vannesmithlab
http://biology.st-andrews.ac.uk/vannesmithlab
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platform built by the Code Analysis, Repository and
Modelling for E-Neuroscience (CARMEN) project.
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