
Noname manuscript No.
(will be inserted by the editor)

Causal Pattern Recovery from Neural Spike Train Data using
the Snap Shot Score

Christoph Echtermeyer · Tom V. Smulders ·
V. Anne Smith

Received: date / Accepted: date

Abstract We present a new approach to learning directed information flow networks from
multi-channel spike train data. A novel scoring function, the Snap Shot Score, is used to
assess potential networks with respect to their quality of causal explanation for the data.
Additionally, we suggest a generic concept of plausibility in order to assess network learning
techniques under partial observability conditions. Examples demonstrate the assessment of
networks with the Snap Shot Score, and neural network simulations show its performance
in complex situations with partial observability. We discuss the application of the new score
to real data and indicate how it can be modified to suit other neural data types.

Keywords neuronal assembly analysis · spike train · causal network · neural information
flow

Christoph Echtermeyer
School of Biology, University of St Andrews, St Andrews, KY16 9TS, United Kingdom
Tel.: +44-(0)1334-463362
Fax: +44-(0)1334-463366
E-mail: ce86@st-andrews.ac.uk

Tom V. Smulders
Institute of Neuroscience, The Henry Wellcome Building for Neuroecology, Newcastle University, Newcastle
upon Tyne, NE2 4HH, United Kingdom
Tel.: +44-(0)191-2225790
Fax: +44-(0)191-2225622
E-mail: tom.smulders@ncl.ac.uk

V. Anne Smith
School of Biology, University of St Andrews, St Andrews, KY16 9TS, United Kingdom
Tel.: +44-(0)1334-463368
Fax: +44-(0)1334-463366
E-mail: vas1@st-andrews.ac.uk

Anne

Anne
Journal of Computational Neuroscience 29: 231-252 (2010)

2

1 Introduction

Understanding the brain boils down to understanding its interplay on many different spatial
and temporal scales. Therefore, fundamental knowledge about the nervous system’s connec-
tivity is crucial for deeper insights into its machinery. It is thus not surprising that significant
efforts have been spent for the development of both anatomical and analytical approaches in
order to reveal yet another jigsaw piece of brain circuitry.

Current technical advances in spatial and temporal resolution have led to an increas-
ing amount of physiological data with many channels recorded simultaneously (e.g. [57,
35,37,76,68]). The increasing dimensionality of the data raises the need for powerful com-
putational tools to detect and extract critical features for further analysis. Our work joins
the class of analysis tools for electrophysiological recordings - in particular multi-channel
spike trains. The Snap Shot Score efficiently reveals effective connectivity (over a range of
time-lags) between recorded units and thereby offers a new perspective on the data.

In general, collecting spike train data from a system is insufficient to reconstruct struc-
tural connectivity between units, as neurons are sampled with relatively low spatial density.
Even if data could be collected from all neurons, their functional connectivity, i.e. their cor-
related activity, does still not convey enough information for an unambiguous decision on
their causal interactions (Fig. 1). A network representing functional relationships is thus
not an attempt to suggest structural connectivity, but a visualisation aid for data analysis.
In order to be able to draw conclusions from such a network, its semantic must be defined
by an underlying model. Different model types might favour different kinds of connectiv-
ity pattern; for example, tree-like (Fig. 1a), chain-like considering hidden units (Fig. 1b),
or chain-like structures among observed units only (Fig. 1c). Choosing any pattern pref-
erence reduces ambiguity of good explanations (i.e. networks) for the data, such that they
become more consistent. The model type also determines the interpretation of networks;
for example, links might represent cause-effect relationships. Neuron models according to
the integrate and fire paradigm [72,1] contain such cause-effect relationships, which renders
corresponding networks easily interpretable. Connectivity suggested by the model might
differ from the actual anatomical connectivity and is thus called effective connectivity [25,
71]. The method introduced in this paper implicitly uses a causal model to reveal effective
connectivity from spike train data.

To date, extra-cellular neural recordings can only be made from a fraction of neurons in
the neural system, such that most neurons remain hidden units with respect to the recorded
data. The predominant number of non-observed units affects the detection of functional and
effective relations: Observed units, connected by unobserved chains, can show dependence
over different time-lags depending on the length of the connecting chain. This is commonly
taken into account by analysing relationships for a series of different time-lags; in contrast,
the technique presented in this paper accounts for multiple time-lags simultaneously. Our
method favours connectivity patterns for which responses are explained by short time-lags,
but it will also suggest connections with larger time-lags if they explain the data significantly
better. This reflects Occam’s razor [48] as an accepted model selection criterion, when di-
rect (short time-lag) connections are considered to be simpler than indirect (long time-lag)
connections. The range of time-lags considered by our method can be adapted to suit the
specific characteristics of the data.

Different analysis techniques for constructing neural information flow networks from
neural electrophysiological data exist [9]. (See Table 1 for a classification of analysis meth-
ods.) These methods can be categorised according to how they use the data: as spike times
or transformations to the frequency domain. Spike time methods utilise the full precision

3

Fig. 1 Correlation does not imply causation: Networks visualising information flow between nodes from left
to right with different time-lags. Filled nodes are observable while the white node cannot be observed. Mere
correlation between observed nodes cannot distinguish between alternatives: a hub-node with connections of
different time-lags, b homogenous time-lags involving non-observed nodes, c chain structure among observed
units.

of spike train data, while frequency methods smooth out minor variations. Some methods
of either category average over multiple trials (and thus require several repeated recordings
under same conditions), while others can be applied to single trial recordings. Additionally,
techniques differ in whether or not they require spike trains of individual neurons. Meth-
ods fitting neuron models to the data require single unit data (i.e. all spikes on one channel
originate from exactly one neuron), whereas other approaches can handle non-spike sorted
multi-unit data (with outputs of multiple neurons per channel). Some methods are restricted
to the analysis between pairs of channels and might thus fail to pick up relationships that
are conditional on more than one channel; multivariate analysis techniques can detect these
complex patterns. Our new method aims to combine the advantages of both spike time and
frequency domain methods, by using a mixture of these concepts. It can reveal multivariate
relationships and is applicable to both single and multi-unit spike train data without requir-
ing multiple trial recordings.

2 The Snap Shot Score

In analogy to Hebbian learning [33, p.62], revealing an information flow network can be
summarised as: cells that fire together, shall wire together. Discovering, or learning, such a
network with our method requires the assessment of many potential networks using a scor-
ing function, which assigns a high value to networks that give a good causal explanation
of the data and a low value otherwise. Links in the learned network represent an excitatory
influence of the starting node on the destination node. If the number of potential networks
is sufficiently small, all of them can be evaluated, but in general too many networks ex-
ist to be evaluated exhaustively. In such cases, search heuristics or Monte Carlo Markov
Chain (MCMC) methods can be used to select a subset of promising networks to score. Any

4

Table 1 Classification overview of techniques that can be used for inference of neural information flow net-
works from electrophysiological data. Legend: ⇥ required/intended use, � possible use, n/a not applicable.

method (based on) spike time multiple single-unit multi-unit analysis
/frequency trials type

Joint Peristimuls time ⇥ ⇥ � pairwise
Time Histogram

(JPSTH)
[27,2]

Cross-Correlation frequencya ⇥ ⇥ ⇥ pairwise
[60]

Information Theory frequencya ⇥ ⇥ � multivariate
[65,8,18]

single neuron model time � ⇥ n/a multivariate
[56,49]
Gravity time � ⇥ � multivariate

[28,26,47]
Dynamic Bayesian frequency � n/a ⇥ multivariate

Network (DBN) (Hz)
[70]

Partial Directed frequency � ⇥ ⇥ multivariate
Coherence (PDC) (Hz)

[67,6,5,74]
Generalised Linear time � ⇥ ⇥ multivariate

Model (GLM)
[14,58,75,62]

Granger causality frequency � � ⇥ multivariate
[31,11] (Hz)

Direct Transfer frequency � � ⇥ multivariate
Function (DTF) (Hz)

[39,20]
Snap Shot Score both � ⇥ � multivariate

(SSS)

a Frequency meant in terms of a frequentist’s probability estimate [17]. Sufficient amounts of data are required
for these estimates, although not necessarily multiple identical trials.

generic search method that operates on a discrete search space is suitable for our method. We
refer the reader to the manifold literature on such methods: greedy search [16]; evolutionary
algorithms [7,4], such as genetic algorithms [78] or particle swarm optimisation [40,19];
and the large class of MCMC methods: Metropolis-Hastings [51,32], simulated annealing
[43,13], and Gibbs sampling [12,66], for example.

The core of our method, the Snap Shot Score (SSS), can account for relations over
multiple time-lags. This is achieved by converting each spike train with a low-pass filter to an
activity level series. All spike times are preserved in the activity level series, and additionally
– in inter spike intervals – it is enriched by information about past neural activity. The actual
score values are then calculated using both the spike trains and activity level series, by
taking snapshots of the activity level at all spike times. In order to account for multivariate
relationships, i.e. situations in which an effect has more than one cause, multiple activity
level series need to be joined before calculating the score. The mathematical description of
our method follows next, followed by interpretations and examples.

We consider spike trains of n channels being given by the n-dimensional time series
s = (sk,t)

k=1,...,n
t=1,...,T with sk,t = 1 if a spike was detected at time t on channel k and sk,t = 0

5

otherwise. We define corresponding activity level series a = (ak,t)
k=1,...,n
t=1,...,T with

ak,t = max
j=0,...,t�1

sk,t� j� j ·d (1)

for some decay constant d ⌦ [0,1]. Throughout most of this paper we consider d = 3�1 such
that the activity level of channel k at time t is determined by sk,t ,sk,t�1, and sk,t�2, only.1

The further a spike occurred in the past, the less influence it has on the activity level. This is
because the potential weight of a spike 1� j ·d decreases as j, the number of time-lags into
the past, increases. Spikes in the more recent past (i.e. a smaller j) or the present (j = 0)
have higher weight and thus supersede any spikes that occurred earlier. This is due to the
maximum taken in equation (1). Any spike further in the past (from time t) than ✏1/d⇣,
the number of time-bins it takes for activity to fully decay, does not contribute at all to the
activity level series (at time t): Such spikes result in a negative value for 1� j ·d; thus, any
subsequent spike, or even current silence (0), would be selected by the maximum.

The joined activity level series a(k1,...,km) of channels k1, . . . ,km is defined as the maxi-
mum over channels for each time t:

a(k1,...,km),t = max
j=1,...,m

ak j ,t . (2)

If m = 1, the joined activity level series (join) is thus of a single channel. This join is identical
to the activity level series of that channel. We use the term activity level series to identify
both joins and activity level series of single channels.

Definition 1 (Snap Shot Score) For a given pair (a,s) of activity level series a = (at)t=1,...,T
and a spike train s = (st)t=1,...,T , the Snap Shot Score is defined as

SSS(a,s;� t) = ⇥T�� t
t=1 at · st+� t

⇥T�� t
t=1 at

(3)

if ⇥T�� t
t=1 at ↵= 0, and 0 otherwise. The parameter � t ⌦ N>0 is called the shift constant; it

defines the minimal time-lag with which causal effects are assumed to occur. Throughout
this paper we consider � t = 1, i.e. at least one time step between a cause and its effect.

The SSS quantifies the excitatory effect of an activity level series on a spike train (Fig. 2):
The score value is determined by spikes occurring within the lag-window W defined by the
inclusive boundaries minimal response-lag (= shift constant � t) and maximal response-lag
(=✏d�1⇣+ � t � 1). Potential information flow networks are assessed by identifying each
data channel with one network node. Every node is then assigned a score value depending
on the nodes linked to it. Commonly, a link’s source node is called a parent of the destination
node (child).2 Using this terminology, the child-node is scored by applying the SSS to its
spike train and the join of all parent-channels. A node without any parents is also assigned a
score value, which requires the join a(1,...,n) of all channels. With the child’s spike train s, the
score of the parentless node is SSS

�
a(1,...,n),s;� t

⇥
if this value is non-zero, and 1 otherwise.

Finally, the score of the full network is the product of all its nodes’ scores.

1 Other choices for the decay constant are possible: the smaller d is chosen, the larger the range of time-
lags considered for detection of interrelations. Extreme values where d = 0 (activity level constantly 1 once
a spike occurred on the channel) or d ⌃ 0 (activity decaying extremely slow) are unlikely to deliver sensible
results. We have chosen d = 1/3 to keep examples (Section 3) expressive and clear. For real data, the decay
constant can be derived from the anticipated maximal causal lag (in time-bins) or by using a parameter series
as outlined in example 3, later.

2 A loop-link renders a node parent and child at the same time. We will refer to such configurations as
self-exciting.

6

 decay d = 1/3

 a(1,2),t = max(a1,t, a2,t)

shift constant �t = 1

5

$

Fig. 2 Graphical interpretation of the Snap Shot Score. a Spike trains for three channels. The channel on
the bottom is excited by the upper two channels. b Activity level series of upper two channels for given
activity level decay (decay constant d = 1/3). c Joined activity level series (join) of upper two channels.
d Snapshots of joined activity level series taken at spike times of bottom channel corrected by shift constant
(� t = 1). Normalising the snapshot-values

� 2
3 + 1

3 +1+ 1
3 +1+ 2

3 = 4
⇥

by the accumulated joined activity�
1+1+1+ 2

3 + 1
3 +1+1+1+ 2

3 + 1
3 +1+1+1+ 2

3 + 1
3 = 12

⇥
yields the SSS value

� 4
12 = 1

3

⇥
.

7

The SSS can be easily interpreted by dividing both the numerator and denominator of (3)
by T �� t to render both terms time-averages, which can be understood as probability esti-
mates; the left hand side is then a conditional probability [22], such that (3) informally reads
as:

P
�

spikes will follow,
given that activity is high

=

P(spikes following high activity)
P(high activity)

. (4)

The model underlying the SSS assumes that the spike trains are generated by a stochastic

process Xt =
⌃

X (1)
t , . . . ,X (n)

t

⌥
, where each neuron’s future activity depends on past neural

activity, i.e.

P
⌃

X (i)
t+1

⇧⇧Xt ,Xt�1, . . . ,X0

⌥
. (5)

As discussed below, the SSS can be used to learn a network, which gives more specific
information about the process Xt : First, dependencies over time are limited by the score’s
lag-window W ; secondly, parent-child relations in the learned network describe which sub-
set of neurons pa(X (i)) was found to be relevant for each neuron X (i), namely, its parents.
Equation (5) thus simplifies to

P
⌃

X (i)
t+1

⇧⇧pa(X (i))t̄⌦{(t+1)�l | l⌦W}

⌥
(6)

and describes the process Xt more concretely. Equation (6) does not imply one particular
neuron model in order to interpret learned networks. Instead, any neuron model for which
this process is a reasonable characterisation can be chosen. This could, for instance, be a
leaky integrate and fire neuron, where the leakage current is chosen such that temporal sum-
mation of synaptic inputs only occurs over a time-window corresponding to the score’s lag-
window W . Stochastic dependencies in the resulting spiking process Xt would then match
equation (6). Changing assumptions about the neuron model leads to a distinct understand-
ing of the network. The large number of possible models prevents discussing all of them; we
have thus chosen to present an easily interpretable template model in which the learned links
between observed units stand for chains of hidden units. The aim of this model is to give
an illustrative example of how to interpret recovered links; we do not suggest it to reflect
physical connectivity. The model consists of the following assumptions:

– All neurons act as unreliable relay units, i.e. spikes received through synaptic transmis-
sion are forwarded to connected neurons with a certain probability.

– All postsynaptic potentials are excitatory, and synaptic transmission takes one time-bin
per synapse.

– Each recovered link between observable neurons represents a connection between these
neurons via a number of synapses (connection length). This number of synapses ranges
from � t (minimal response-lag) to ✏d�1⇣+ � t � 1 (maximal response-lag). The con-
nections are formed by chains of hidden units, one less than synapses in the chain. For
shift � t = 1 and decay constant d = 3�1 (as chosen before), there are 1 to 3 synapses
between connected units, i.e. observable neurons either connect directly to each other or
by up to 2 hidden units in between.

This descriptive model gives a simple interpretation for links, which can assist in explain-
ing features of the SSS, particularly, the trade off between explanatory power and model
complexity. In this model, complexity depends on both the number of links to a given node,
i.e. the number of neurons upon which a neuron’s firing is dependent, and the length of
connecting chains of hidden nodes. Examples in section 3 will demonstrate how the SSS
does not add additional parents unless the explanatory power is sufficiently increased, and

8

how the SSS prefers parents that fire with minimal rather than maximal response-lag, corre-
sponding to shorter hidden chains. Thus, the SSS aims at explaining the dependence among
(observed) units by linking them using few and short connections.

Learning an information flow network from data generally involves scoring many po-
tential structures. Ideally, the highest scoring one would be found. Because of the score’s
decomposability, the best scoring network can be assembled from each node’s best scoring
parent configuration. Thus, full network scores need not to be calculated for learning, but
it is sufficient to determine each node’s optimal parent configuration. In order to identify
these with certainty, all 2n possible joins for each node would have to be evaluated.3 How-
ever, for practical dimensions (like a 60 electrode array, for example), there are far too many
joins for an exhaustive evaluation. To circumvent this problem, the set of information flow
networks to score can be limited to ones with sparse connectivity, or limits can be placed
on the number of parents per node. The number of potential child-parent relations might
also be reduced by excluding connections ruled out by factual knowledge (like large phys-
ical distance between electrodes, for example). Additionally or alternatively, as mentioned
previously, search heuristics and Monte Carlo methods can be used to select promising net-
works to assess [16,7,4,78,40,19,51,32,43,13,12,66]. Once dependencies have been re-
vealed, they can be visualised as a network (graphical model [3,59,45]), which connects
nodes associated with certain spike train channels to indicate excitatory influence between
the observed units.

Network inference can be assisted by prior knowledge about the studied system, which
can be used to derive a link-acceptance-threshold (LAT) for each network node. Any parent
configuration with a score value lower than the child node’s LAT will be rejected. This se-
lection removes irrelevant links and can lead to sparser, more relevant networks. The LAT
reflects the best explanation for the data at a particular level of complexity. The actual level
of complexity is determined by the prior information at hand: Knowledge about the studied
system constrains the space of potential parent configurations for each node. For example,
self-excitation might be excluded, or observed units are known to only have few interaction
partners. The space of potential configurations can thus be restricted to a particular level of
complexity, i.e. number of parents. Configurations at the highest permitted level of complex-
ity determine the LAT, which is the highest score value of these configurations. This highest
scoring configuration (LAT-configuration) reflects the best explanation for the data at a level
of complexity, which could not be limited further by using prior knowledge (represented by
the LAT-configuration). Better explanations than the LAT-configuration might exist: these
are simpler configurations with scores equal or above the LAT. Calculating the SSS for sev-
eral parent configurations can reveal such superior explanations. Ultimately, we seek to find
the simplest among the best scoring configurations consistent with prior knowledge. Thus,
any configuration with a score value below LAT should be omitted from result lists, as it
gives a worse explanation for the data than prior knowledge (LAT-configuration).

3 Implementation note: Profiling implementations (in C [41] and Python [77]) of our method revealed
that calculating joins is computationally much more expensive than calculating the SSS value. Instead of
recalculating a join for different nodes, we suggest to perform scoring join-wise, i.e. scoring all nodes with a
join once it has been computed.

9

3 Illustrative Examples

To illustrate the functionality of our method, we discuss a series of three examples: First, we
clarify the nature of the SSS by working out basic features of the score. We then evaluate
all possible parent configurations of a node for different sample data sets and discuss the
score’s quantification of these. Finally, we apply the method to data from neural network
simulations, to demonstrate its performance in complex scenarios. This last example will
also address how good parameter setting of the SSS can be found in practice.

Example 1 (Snap Shot Score features) In order to illustrate first basic features of the score,
we consider an unnatural data-set with 6 channels (Fig. 3a). We calculated the activity level
series (Fig. 3f) and scored selected information flow networks (Fig. 3b-e); the links of these
networks were chosen to illustrate central features of the SSS:

– The score value is zero if putative cause and effect do not appear within the lag-window
of minimal and maximal response-lag:

⇤
� t, ✏d�1⇣+� t�1

⌅
= [1,3] (Fig. 3b). This

is especially true when effects precede supposed causes (Fig. 3c). Note that in fig-
ure 3bcd, node B’s contradictory parent configurations render the full networks incon-
sistent, which is reflected by their zero score values.

– The score value is maximal if putative cause and effect occur exactly at the minimal
time-lag, and it is lower if effects occur later (Fig. 3b). The SSS thus favours units as
causal ones to which the response-lag is minimal (Nodes D, E, F in Fig. 3b vs. 3c).

– Addition of more parents may get penalised by the SSS: If higher complexity is not
balanced out by a significant explanation benefit, the score value decreases (Nodes D,
E, F in Fig. 3c vs. 3d).

– Different parent configurations can have the same score value if spike trains are identical
for different units (Fig. 3e). It is unsurprising that the score cannot distinguish between
alternative explanations where different, but identical in spike train, units are parents:
any unbiased method would be expected to present such equivalent alternatives. It is
not optimal that the score cannot distinguish between identical single units and their
join: one would rather penalise the multi-parent structure. But, as we will discuss in the
following example in more detail, for realistic data, it is extremely unlikely that two units
have precisely identical spike trains; it is thus extremely unlikely that several networks
are assigned the same high score value.

10

)*

+

CD

E

,

-

SSS(F)=
�

snapshots�
parent activity

1
3

1 + 1 + 2
3 + 1

3

1
9

= =

.

/01

*

/02324

5

/01

6

/01

Fig. 3 Legend separate in box on page 11.

11

Fig. 3 legend: Simplistic spike trains and SSS values of selected networks (left), activity
level series used for scoring and detailed calculation example (right). a Spike trains of 6
units (A-F). b-e Snap Shot Score values shown for selected parent-child configurations
(near child nodes) and for full networks (� = . . . next to network). b Unit A is single
parent of all other nodes. Scores of nodes B and F are zero, as these units do not re-
spond within the defined time-lag-window: Unit B undershooting minimal response-lag
(� t = 1); unit F overshooting maximal response-lag (✏d�1⇣+ � t� 1 = 3 time-steps).
Decreasing non-zero scores of nodes C through E reflect the Snap Shot Score’s prefer-
ence of short time-lags. c Unit C is single parent of all other nodes. Scores of nodes A
and B are zero, as their response undershoots the minimal response-lag: Links C� A
and C� B are directing backwards in time. Scores of nodes D, E, and F are larger for
parent node C than for parent node A (b), as their response-lag to unit C is smaller than
to A. d Units A and C are joined parents of nodes B, D, E, and F . All non-zero scores
are smaller than those where unit C is the only parent (c); the explanatory benefit of two
parents (A and C) does not balance out raised complexity of the network. e Nodes A
or B are parents of node C either exclusively or jointly; a chain is formed of C to D to E
to F . For the data in (a), these three resulting networks are the best scoring ones. Their
structure differs with respect to the parent configuration of node C, but links between
nodes C to F are unambiguous. f Activity level series of all units (top) and joins a(A,B)
of A and B, and a(A,C) of A and C, respectively (bottom). Join a(A,B) is used in (e) and
equals individual activity level series of A and B. Join a(A,C) was used to calculate scores
in (d). g Detailed score calculation for node F with parents A and C as shown in (d).

While the preceding example showed how the SSS works for selected child-parent config-
urations, the following one illustrates how it operates on the full space of parent configu-
rations of one particular node. The systems discussed are of low dimensionality in order to
be able to display results appropriately; systems of higher dimensions will be discussed in
example 3, later.

Example 2 (Exhaustive network space evaluation) To illustrate the Snap Shot Score’s selec-
tivity, we consider different activity patterns (4 channels) and evaluate the score of node 1
for all its possible parent configurations (Fig. 4). We compare scores of individual configu-
rations against the mean score of all configurations for illustrative purposes, only.4 Despite
the low dimensionality of the depicted situations, several characteristics of the SSS can be
seen. For example, joining silent channels has no effect on the score value: configurations
in Fig. 4a have the same score value whether they contain the silent channel 4 as a parent or
not. Also, joining completely identical channels is effectless compared to using only one of
them (Fig. 4b, channels 2 and 3). Both of these effects are due to the max-operation in (2).
More precisely, the score stays unaltered if the activity level series of the channel to join
does not raise the activity level any further (Fig. 4c, join of channels 1 and 2 equals chan-
nel 1). This occurs in only three special cases: (1) joins of identical spike trains, (2) joins
where all spike trains are a precise subset of one of the spike trains, and (3) joins including
silent channels. This is not optimal; one would rather penalise the effectless complication
of a structure. However, this behaviour is a consequence of the simplicity of the score. For
real data, it seems unlikely that identical spike trains, or spike trains that echo precisely a
subset of another, are observed on different channels; thus, the first two special cases are ex-
pected to have little effect in practical application. The third special case can be handled by

4 Generally the mean score is unknown, because an exhaustive evaluation is computationally impossible
in practical dimensions.

12

Fig. 4 Spike train patterns and activity level series (left) and corresponding Snap Shot Score values of chan-
nel 1 for all its possible parent configurations (right). Spikes are indicated by grey bars with superimposed
lines indicating the resulting activity levels. The adjacent bar plot shows the score values of all possible parent
configurations for node 1 (parent nodes given above each bar). Mean score value and mean plus/minus one
standard deviation (root mean square) shown by dashed lines for illustrative purposes. Bars indicating the
score values are coloured light grey if below the link-acceptance threshold (score of most complex configu-
ration 16) and dark grey otherwise. a Channel 4 silent; joining it has no effect on SSS value. b Channels 2
and 3 identical; joining more than one of them has no effect on SSS values. c Close spikes on channel 1;
self-exciting configuration (number 2) with positive SSS value.

13

preprocessing to remove inactive channels (as would be likely practice in any case). Thus,
in practice the SSS values are likely to be different for every parent configuration (Fig. 4a,
configurations 1-8). The different score values can be used to order parent configurations
hierarchically for subsequent inspection and result selection.

In Fig. 4a-c, the SSS assigns distinct top-scores to its most favoured configurations. To
grasp the score’s characteristics for more variable data, the spike patterns in Fig. 4 were
concatenated in three different ways to yield the spike trains shown in Fig. 5. Interpreting
the resulting spike trains with respect to the question “Which channels are exciting channel
1?” can be harder or easier than before; the SSS values reflect this: In Fig. 5a, channel 1
seems to be clearly excited by channel 2, as all parent configurations but one of those in-
cluding this channel have score values above the mean. However, except from the clear peak
for configuration number 3, the score is high and undecided about some others, especially
configurations 7 and 11, and configurations 4 and 5. The spike train does not contain enough
information to clearly prefer one of these parent configurations over the other; we find high
scores approaching one standard deviation (SD) above the mean for all four configurations.
A similar situation occurs in Fig. 5b: One configuration is clearly favoured, too, but high
scores (about one SD above the mean) are reached by only two other configurations. The
spike train in Fig. 5b is thus more expressive to the SSS than the preceding one (Fig. 5a).

Score value peaks become flat when the data contains unclear information: In Fig. 5c
spikes on channels 2,3 and 4 all occur as favoured (with time-lag 1) once, but also with
larger lags another time. We find the prominence of the top configuration number 5 less
distinct than in other cases and the overall score distribution close to the mean score. More
informative data would be needed for the formation of a distinct peak; indeed, repeating
one of the two spike patterns (Fig. 4bc) in the concatenation twice already leads to fewer
and more distinctly favoured configurations (not shown).5 In both Figures 4 and 5, even
numbered configurations include node 1 as its own parent; for configuration number 2, node
1 is its only parent. This exclusive self-exciting configuration can have non-zero score values
when two spikes on channel 1 occur close enough to each other, i.e. within the lag-window
(Figs. 4c, 5c); any two spikes that are too close or too far apart do not contribute to the
score value (Fig. 4ab). If (exclusive) self-exciting configurations seem implausible for the
single-unit spike train data, they should not be considered.

In the final example, we assess the performance of our method by using simulated data to
demonstrate its potential and value for learning effective connectivity networks in practice.
We begin the example by introducing a plausibility concept to assess any network inference
technique under partial observability conditions. We apply this concept to the SSS to show
its performance in a series of different situations.

Example 3 (Neural network simulations) To indicate how the SSS performs in more realis-
tic situations, we simulate a feed-forward network (Fig. 6a) with an integrate and fire model
(see [18, pp.162] or [29, chapter 4.1] for example) and learn information flow networks
from the simulated data. The neural simulation was set-up as follows: Neural baseline ac-
tivity is given by uncorrelated homogeneous Poisson processes [22, pp.446]. For different
simulations, the rate parameter was varied (⇤ = 10�1,15�1,25�1,30�1,40�1,50�1), corre-
sponding to level of spontaneous spiking activity. Spikes propagate according to the network
connectivity (Fig. 6a) with a delay of one time-bin (1 msec) per link. Each neuron integrates
spikes received from its parents over time; the synaptic efficiency was varied to allow 2,3,4,

5 For independent random spike trains, SSS values of all parent configurations lie within mean ± SD and
approach mean score (SD 0) for increasing length of spike trains (not shown).

14

Fig. 5 Exhaustive score evaluations of all parent configurations for channel 1 with same semantics as in
Fig. 4. Spike train patterns are concatenations of spike patterns in Fig. 4 (a Fig. 4ab, b Fig. 4ac, c Fig. 4bc).
a Distinct peak and four parent configurations with score value close to mean plus one SD. b Distinct peak and
two parent configurations with score value close to mean plus one SD. c Score value of most configurations
close to mean score and vague peak only.

15

Fig. 6 a Simulated feed-forward network (38 nodes, 47 links) with observable units (14 nodes ⌃ 36.8%)
shaded in grey and hidden units unshaded. b Observable nodes from network shown in (a) with all 34 plausible
links (⌃ 18.7% out of 182 possible links) for plausible lags lmin = 1 and lmax = 3.

or 5 received spikes to evoke a spike in the receiving neuron. In each simulation, all neurons
are stimulated by uncorrelated activity of equal rate; synaptic efficiency is equal for all neu-
rons. Every such parameter combination was simulated 10 times for different data lengths
(5,10, and 30 seconds, 1,5, and 10 minutes). In accordance with practical situations, we
assume that the simulated system is not completely observable, and only spike trains from
a subset of units (observable nodes) can be collected and used for learning. Learned net-
works only contain links between these observable units, such that their quality cannot be
determined by a simple link-by-link comparison with the full network, in which many ob-
servable units are connected via hidden ones. We therefore analyse the full network in order
to classify each possible link between observable nodes as plausible or implausible. For this
classification, we introduce a concept of (link) plausibility, which is not restricted to use
with the SSS, but can be used for the assessment of any network learning technique using
neural network simulations. The general idea of the concept is to determine plausibility of

16

any link between observable units from the known simulated network. For example, plausi-
ble links can be ones which exist in the full network (e.g. 21� 25, 23� 27, and 27� 32)
or certain links for which a directed path from the link’s starting node to its end node exists
(e.g. 3� (7)� 13, 13� (17)� 21, and 23� (28)� (33)� 38).6 Links that contradict
the full network by connecting nodes in the opposite direction of information flow in the
feed-forward network (e.g. 13� 3, 21� 3, and 35� 3) are implausible, for example. The
system’s partial observability can lead to plausible links for which no directed path between
units exists: A common trigger can cause co-ordinated firing between nodes, which are con-
nected via the triggering node only (e.g. 6⌥ (2)� (5)� 11). A link connecting the two
co-ordinated nodes is thus plausible if one node could fire within the plausible lag-window
[lmin, lmax] of the other node (in the right order). Plausibility of a link thus depends on the full
network, which nodes are observable, and parameters specifying the minimal and maximal
plausible lag (lmin, lmax). This is formalised in the following

Definition 2 (plausibility) Let a and b denote two observable nodes. Node a is called a
plausible parent of b if there exists a node s (in the full network) for which directed paths to
both a and b exist such that:

1. their lengths7 l(s� a) and l(s� b) fulfil lmin ⌅ l(s� b)� l(s� a)⌅ lmax, and
2. a path a� b exists, which does not include another plausible parent of b.

Node a is called an implausible parent of b otherwise. The link a� b is called (im)plausible
whenever a is a(n im)plausible parent of b.

The first condition in the definition assures that dependence between nodes a and b can arise
within the plausible lag-window. The second condition refines the set of plausible parents
by rejecting those for which the relationship can only propagate through another plausible
parent of b. (For example, for (lmin, lmax) = (1,3), the link 23� 27� 32 fulfils the first but
not the second condition. Comments on the generic concept of plausibility can be found in
the last paragraph of this example.) We used an algorithmic implementation (Algorithm 1)
of the definition in order to analyse the full network (Fig. 6a). Throughout this example,
the plausible lags are chosen (lmin, lmax) = (1,3) to determine all plausible links (Fig. 6b).
We have chosen lmin according to the minimal lag between observable nodes in the full
network and lmax such that a modest percentage of links will be plausible.8 In this setting,
the plausible lag-window and the lag-window of the SSS are both [1,3]. This matching is
expected to yield the best results because links in learned networks only connect nodes with
appropriate time-lags: ones within the SSS lag-window. As the lag-windows are identical,
all links that are plausible could be learned, but not those spanning over time-lags outside
the plausible lag-window. To show that the performance of the SSS does not depend on this
matching, we will vary the decay constant d (and thus the lag-window) later. We will also
account for the fact that the probability of finding plausible links by chance depends on their
percentage. (See P-value calculation below.)

We ran several series in which both the parameters of the neural simulation and the
score were altered systematically in order to assess their influence on the quality of the

6 Start- and end-nodes underlined, nodes on path in full network (given for illustration) italic, hidden nodes
in brackets.

7 A series of directed links is called a path, if the origin of all links equals their predecessors’ destination.
Length l(a� b) of directed path from node a to b is defined as number of links on path. The length of a path
a� b directly corresponds to the time-lag a signal needs to propagate from a to b. In our neural simulation,
the time-lag in time-bins (1 msec) is equal to the length of a path.

8 For lmin = 1 there exist 12 (⌃ 6.6% out of 182 possible links, lmax = 1), 27 (⌃ 14.8%, lmax = 2), 34
(⌃ 18.7%, lmax = 3), 37 (⌃ 20.0%, lmax = 4) plausible links.

17

Algorithm 1 Determination of all plausible links (Definition 2) for a partially observable
network. The algorithm begins with preliminary determination of reachability sets for each
node. These consist of all nodes to which a directed path exist. The main loop then imple-
ments Definition 2 in two steps: First, potential plausible parents are determined; these are
observable nodes, which fulfil condition 1 in the definition. In the second step, condition 2
of the definition is checked, and nodes violating the condition are removed as potential plau-
sible parents. The remaining nodes fulfil both conditions of plausibility and are returned in
the end.

Input: Full network, observable nodes
Parameters: minimal and maximal plausible lag (lmin, lmax)

for all nodes si do
determine the reachability set Ri of all nodes that can be reached from si via directed paths; Ri = {si} if
si isolated node without any links

end for
for all observable nodes o do

(First determine all nodes ppao that fulfil condition 1 of definition 2)
initialise its plausible parent set ppao := /0
for all nodes si where o ⌦ Ri do

for all nodes pa ⌦ Ri do
if paths si� o,si� pa with lmin ⌅ l(si� o)� l(si� pa)⌅ lmax exist then

ppao := ppao �{pa}
end if

end for
end for
(Remove all nodes from ppao that do not fulfil condition 2 of definition 2)
for all parents pa ⌦ ppao of node o do

if � paths pa� o = (pa,x1, . . . ,xk,o) : ppao �{x1, . . . ,xk} ↵= /0 then
ppao := ppao�{pa}

end if
end for

end for
return all plausible parent sets ppao

recovered networks. (The full network, observable nodes, and plausible links were left un-
altered.) For each parameter combination, the full network is simulated with an integrate
and fire model to yield spike train data. Data channels corresponding to observable nodes
are then used to determine each node’s best scoring parent configuration with no more than
3 parents. Composing these parent configurations yields the recovered network, which is
analysed with respect to its plausibility: Links of learned networks are classified as either hit
or miss, depending on whether they are plausible or not (respectively). We then determined
the recovery rate (the percent the hits represent of all possible plausible links [Fig. 6b]),9

precision (the percent of all the recovered links that are hits), and the corresponding P-value
using the hypergeometric distribution [22, pp.43].10

The performance of the SSS is compared to that of cross-correlation [60], which results
in comparable computational costs. In order to account for different time-lags in the cross-
correlation analysis, the correlation between any two channels A and B has been evaluated

9 Note that the definition of the recovery rate corresponds to sensitivity. We have called it differently
because we do not expect the recovery rate to reach 100% (as is explained in the text later), which the reader
might assume if confronted with the familiar but misleading term sensitivity.

10 The chance level for at least h hits out of p plausible links out of N total links with k links learned is

⇥min{p,k}
i=h qi, where qi = (p

i)(N�p
k�i)

(N
k)

.

18

from time-shifted data: shifting B’s data forward (relative to A) by 1,2, or 3 time-bins. The
maximal correlation between channels was then assigned to the corresponding link A� B.
Links with maximum correlation equal or above a threshold ⇥ are learned; all remaining
ones are not. In practice, the threshold ⇥ would have to be chosen by the user, which is not
possible for the large number of simulations performed here (1,440 simulations). Instead,
for each analysed data-set, the threshold has been chosen to yield optimal performance:
According to the Neyman-Pearson Lemma ([54] or [18, pp.119]), no better choice for ⇥
exists than the one which yields the highest likelihood-ratio (i.e. recovery rate / [100 - preci-
sion]). The threshold ⇥ is chosen according to this optimal trade-off and thus yields the best
performance that can be reached with this technique.

Parameters of the neural simulation (spontaneous activity level, synaptic efficiency) do
not have any physical correspondence in this sparsely connected network; we refrain from
showing their individual influence on network inference, as their combined effect is fully
reflected in the simulated spike train. Instead, the simulation output, the spike train, is char-
acterised by the amount of information it contains about the network: Uncorrelated Poisson
spike trains that were used to stimulate network activity do not convey any information about
the network itself; only spikes that were induced by post-synaptic potentials provide infor-
mation about network connectivity. Therefore, each spike train is characterised by quanti-
fying the proportion of externally induced spikes and evoked ones. Evoked spikes increase
the total number of spikes (i.e. stimulating and evoked ones), and we call the percental in-
crease the simulated system’s impetus.11 When the impetus is low, the data is similar to the
uncorrelated stimulation spike trains (representing inherent spontaneous activity of model
neurons or excitation originating from un-modelled units). A higher impetus indicates a
more autonomous system with higher self-dynamics. In such systems, the spike trains are
more informative about network connectivity, which is expected to improve network recov-
ery. The impetus was determined for every data set used for network learning in order to
show its effect on the performance of our method. We note that the impetus cannot be cal-
culated for real data; its purpose is purely to provide a scale for the informative value of
spike trains in the simulation. Knowing the impetus for real data would be useful to relate
the results of our simulations to the quality of networks learned from these data. However,
experimenters can only estimate the impetus for their data roughly. For example, recordings
within a feed-forward type structure are expected to exhibit a higher impetus than from an
area with many converging external inputs.

In simulation series, we observe the expected relation between quality (impetus) and
amount of data (length of spike train) and the grade (recovery rate, precision) of networks
learned from the data (Fig. 7): In order to learn networks of a certain grade, a lower impetus
can be compensated by longer recordings; longer recordings at a fixed impetus generally
improve the quality of the learned networks; and, for a particular data length, recovered
networks are generally better for higher impetuses, i.e. more informative data.

To understand why the recovery rate does not exceed 35% for any learned network
(Fig. 7a), we note that not all of the links that are classified as plausible are expected to be
recovered. This is because, generally, some redundancy among them exists; for example, in
figure 6b links 20� 29, 21� 29 are both plausible, but given the joint excitation of nodes 20
and 21 by unit 16, they might be similar enough such that one of them is sufficient to explain
spiking of unit 29. The set of plausible links is therefore a superset of those that are expected

11 The impetus = 100 · #evoked spikes/#stimulating spikes where number of evoked spikes =
#spikes in simulation output � #stimulating spikes. If, for example, impetus=0%, then no spikes were
evoked by the stimulation and the simulation output is equal to uncorrelated random spike trains. For
impetus=100%, the simulation output is a mixture of two halves: stimulation spikes and evoked spikes.

19

�low
SSS � 16

�low
cor � 12 �medium

cor � 13 �high
cor � 16

�medium
SSS � 23 �high

SSS � 31

�⌅⇤⇥ �⌅⇤⇥ � ⌅⇤ ⇥

�low
cor � 44

�low
SSS � 37

�medium
SSS � 53

�medium
cor � 53

�high
cor � 58

�high
SSS � 74

�⌅⇤⇥

⇤⇥�⌅

⇤ ⇥� ⌅

� ⌅⇤ ⇥

⇤⇥�⌅

⇤⇥�⌅

�high
SSS � 10�4

�high
cor � 0.09

�medium
cor � 0.16

�low
cor � 0.26

�low
SSS � 0.14

�medium
SSS � 0.02

Fig. 7 Quality of recovered networks depending on impetus and recording length (d = 3�1, � t = 1 fixed).
Data points represent one learned network each; trend lines fitted to points of each data-length. Average
values of the SSS, �SSS, of three impetus-regions low, medium, and high (indicated by curly brackets) given
above/below data points. For the correlation approach, no data points are shown, but these are summarised
in the corresponding average values �cor . a Recovery rate of all plausible links for different impetuses and
different lengths of data. Higher impetuses and longer data sets result in better recovery rates. Longer data
sets can compensate for lower impetuses. b Precision of recovered links for different impetuses and different
lengths of data. High impetuses and longer recordings improve precision. Longer data sets can compensate for
lower impetuses. c P-values of precision shown in (b) on logarithmic scale. Networks with a higher precision
are less likely to be revealed by chance. Lower P-values thus indicate better performance.

20

to be revealed by network inference. Out of this superset, the SSS predominantly recovers
links that connect nodes and their closest plausible parent, but not more distant ones. (This
can be explicitly seen in Fig. 9, which will be discussed later.) Additional plausible links
that do not sufficiently increase the explanatory quality of the network are omitted due to
the SSS’s preference for simpler networks.

In contrast, the precision would optimally reach 100%, such that all recovered links are
indeed plausible. Fig. 7b shows the relationship between impetus and precision, which is
high when the impetus is high. Reaching such precision by chance is extremely unlikely
(Fig. 7c); however, at lower impetuses, the percentage of learned links that are implausible
increases and causes precision to drop down, as is to be expected. For the lowest range of
impetuses [0-20], cross-correlation (on average) yields better precision than the SSS. How-
ever, for higher impetuses as well as for P-values and recovery rates, the SSS shows equal
or better performance than cross-correlation (for which the threshold ⇥ has been chosen to
yield optimal results).

We used the same framework to investigate the robustness of learning performance for
a fixed data length with respect to different choices for the decay constant. The correspond-
ing results are depicted in Fig. 8. Excluding the extreme case d = 1, we find all settings
performing similarly well over a range of impetuses. Setting d = 1 results in a signifi-
cantly worse performance, as the resulting lag-window [1,1] causes the SSS to find rela-
tionships of lag 1 only. Links with larger time-lags (e.g. 3� (7)� 13, 13� (18)� 32, and
23� (28)� (33)� 38) can thus only be found through spurious firing within one time-bin.
This limitation accounts for the comparatively low performance of this setting.

Realistic situations may allow for only a few recordings of the studied system under
similar conditions. We mimic this situation by simulating 10 data sets of 30 seconds in
length, each using the same simulation parameters, such that all spike trains exhibit about
the same 30% impetus.12 For each of the 10 data sets, five networks were learned, one
for each decay constant d ⌦ {5�1,4�1,3�1,2�1,1}, � t = 1. For each decay constant, the
networks from the 10 data sets were averaged. We find the earlier observations (Fig. 8)
confirmed: On average, networks learned with decay constant d = 1 contain fewer plausible
links than those learned with smaller decay constants (Fig. 9a vs. 9b-e). Independent of the
decay constant, implausible links show lower percentages of recovery than plausible ones
(Fig. 9a-e). Furthermore, most plausible links are recovered consistently, while implausible
ones vary for different decay constants (Fig. 9b-e). In order to account for links learned from
spurious relationships, we averaged over all learned networks (d ⌦ {5�1,4�1,3�1,2�1,1});
this reduces the frequency of implausible links significantly, while preserving plausible ones
with high percentages (Fig. 9f).

We refrained from running series to increase the shift constant � t, as the structure of the
simulated network (Fig. 6a) and its implementation as a dynamical system directly suggest
� t = 1 to be the optimal choice. For real data, the shift constant is best chosen based on
the investigator’s expectation about the minimal response-lag over which relationships may
occur; for example, electrode placement (close to each other / in different brain regions)
during data recording may suggest smaller or larger time-lags. Expressing the expected time-
lag as number of corresponding time-bins in the spike train yields the optimal shift constant.

In this simulation example, we find the SSS performing well for a large range of im-
petuses irrespective of (non-extreme) choices for the decay constant. This parameter insen-

12 The data sets sum up to a total recording time of 5 minutes. The impetus was found between 29.7%
and 30.0%. For an impetus of 30%, the simulation output consists of 3 evoked spikes per 10 uncorrelated
stimulation spikes (on average).

21

Fig. 8 Quality of recovered networks depending on impetus and decay constant (recording length 30 seconds,
� t = 1 fixed). Data points represent one learned network each; trend lines fitted to points of each choice of
decay constant. a Recovery rate of plausible links for different impetuses and choices of decay constant d.
Decay constants d ⌦ {5�1,4�1,3�1,2�1} result in similar good recovery rate. Significantly worse recovery
rate for decay constant d = 1 due to inability to consider dependence over multiple time-lags. b Corresponding
precision for impetuses and decay constants shown in (a). As in (a), performance is similar for decay constant
d ⌦ {5�1,4�1,3�1,2�1}, but worse for d = 1 (for the same reason). c P-values of precision shown in (b) on
logarithmic scale.

22

Fig. 9 (part 1) Average of networks learned for data of fixed length (30 seconds) and similar impetuses
(⌃ 30%), using different decay constants (d ⌦ {5�1,4�1,3�1,2�1,1}). Links that can be found in at least
30% of learned networks (for each choice of d) shown with percental frequencies on link. Plausible links are
marked bold (Fig. 6b). a (d = 1) Except for one link (13� (18)� 23), the only plausible links recovered
are those with lag 1. The decay constant is not small enough to capture dependence over larger time-lags.
b (d = 2�1) Good recovery of plausible links with lags 1 and 2. Link 13� (18)� 23 recovered with higher
percentage than in (a). c (d = 3�1) Similar recovery of plausible links as in (b), but different implausible links
(recovered in ⇧ 30% of networks) due to wider lag-window.

23

Fig. 9 (part 2) d (d = 4�1) Similar recovery of plausible links as in (b) and (c), but more implausible links
(recovered in⇧ 30% of networks) than in (b) and (c). e (d = 5�1) Plausible links recovered as in (b-d) plus link
25� 38, but different implausible links than in (a-d). The differences among implausible links in (a-e) indi-
cate that they are learned from spurious relationships over different time-lags. f (d ⌦ {5�1,4�1,3�1,2�1,1})
Average over all networks (a-e) shows good recovery of plausible links. Several implausible links learned
from spurious relationships average out (frequency below 30%).

sitivity is important for practical applications where doubts about parameter settings exist.
In such situations, our simulation results suggest a potential approach for analysis: A fixed
shift-constant � t needs to be chosen (as described above) and should then be used together
with a series of decay constants d (as seen in the example). For each of these parameter com-
binations, networks need to be learned. The decay constant should be gradually decreased,

24

until a further decrease does not lead to substantial differences in learned networks. This re-
sult stabilisation indicates that the decay constant is sufficient, as the resulting lag-window
is wide enough to capture all relevant dependencies. Practically, the average of learned net-
works can indicate which links are consistently found (Fig. 9f). The largest decay constant
for which (most of) these links are learned is optimal. (A decay of d = 1/2 would thus be a
reasonable choice for Fig. 9.) In conclusion, parameters in practical application can be de-
termined in three steps: First, based on the experimenter’s knowledge, the shift constant � t
is selected. In doubt, � t should be chosen smaller rather than larger in order to prevent
ignoring relationships with short time lags. In the second step, networks are learned from
the data using a series of decay constants d. Finally, the learned networks are analysed and
compared with respect to each other, in order to infer the optimal decay for which the width
of the lag-window will be minimal, but sufficient to represent identified relations in the data.
As discussed before, the shift- and decay-constant determine the interpretation of learned
networks.

We would like to emphasise again that the classification of links as plausible or im-
plausible is not restricted to be used for assessment of the SSS. The formalised concept of
plausibility can generally account for situations where partial observability results in (multi-
ple) causal explanations that are not present in the full network; such explanation is plausible
if it is consistent with the full network. The presented idea can be used for simulation-based
assessments of any recovery method under conditions of partial observability. We see two
important advantages in using the plausibility approach: (1) The formal specification about
expected results is independent of subjective classification of links, and (2) The algorith-
mic implementation of the concept facilitates a fully automatic assessment process of many
different networks. Both points arise from the fact that the plausibility approach minimises
manual interaction in the assessment of results. Because it is neither specific to the simulated
neuron model nor the technique used to reveal networks from data, it can thus be used for
large scale comparisons between different methods.

4 Discussion and Conclusions

In this paper, we presented a novel analysis method for multi-channel spike train data, which
can detect stochastic relations over multiple time-lags. Simulations were used to demon-
strate the method’s ability to cope with different impetuses of the studied system. In com-
parison to an optimally performing cross-correlation analysis over different time-lags, the
SSS showed superior performance in most cases. Examples have demonstrated the SSS’s
preference of short and few connections. However, modifications of our method can change
the preferred connection type. For example, changing the activity level calculation13 can
alter the score’s preference of connection lengths (e.g. preferring moderately long connec-
tions over both longer or shorter ones). Accordingly, changing the join-operation by re-
placing the maximum function in (2) with the minimum or average of inputs, for example,
affects the favoured integration of multiple inputs (maximum: logical or; minimum: logi-
cal and; average: mean). The diversity of potential modifications indicates that the SSS can
be adapted to other time series data as well (e.g. calcium imaging [73], fMRI [36,50], EEG
[55]). However, we do not discuss such adaptations in this paper.

13 Activity level series correspond to rate-limited firing rate series that were computed using a causal kernel.
A causal kernel function f satisfies supp(f)�R<0 = {x ⌦ R| f (x) > 0}�R<0 = /0 [18, p.14]. Such a kernel
does not make use of information gained in the future. The activity level of channel k at time t is given by
ak,t = ⇥ j=0,...,t f (t� j · sk,t� j) .

25

In the special case d = 1, � t = 1, activity decays completely within one time-bin, such
that the activity level series equals the spike train it is calculated from. The lag-window W
is thus of width 1, rendering the process Xt describing the spike trains a 1st order Markov
process, such that (6) reduces to

P
⌃

X (i)
t+1

⇧⇧pa(X (i))t

⌥
. (7)

In this special case, the SSS can be related to another network learning approach: Dynamic
Bayesian networks (DBNs) restricted to 1st Markov order can encode such dependencies
[52,30,53]. Increasing the Markov order of DBNs raises computational costs for learning
such networks, whereas a widened lag-window does not affect the costs of our method.
However, it is only in the special case (d = 1, � t = 1) where the nature of resulting networks
from both approaches match.

DBN learning approaches have been applied to biological data of different kinds, e.g.
gene expression profiles [52,24,61,42,79], fMR images [38,46,64,63,10], and also neural
electrophysiological multi-unit data [70]. So far the only publication of which we are aware
applying DBNs to (simulated) spike train data is Eldawlatly et al. [21], who used a coarse
representation of 3 msec time-bins for the data. We speculate that the sparsity of DBN learn-
ing approaches applied to spike trains is due to the scoring functions that are commonly used
(e.g. the Bayesian Dirichlet (BD) score [15,34], Bayesian Dirichlet equivalence (BDe) score
[34], or the minimal description length (MDL) [44], which is equivalent [23] to the Bayesian
information criterion (BIC) [69]). These scores are not specifically adapted to any data-type,
i.e. states of variables do not possess any semantics and are thus treated equally. This can be
problematic for their application to spike train data, as inspection of the BD scores shows:
these scores favour parent-child relations for which parents’ states are good predictors of
the child’s states most of the time (irrespective of their semantics). The enormous imbalance
in the number of spiking to non-spiking bins can cause the BD scores to favour parent-
child relations for which the non-spiking of the parents can predict non-spiking of the child;
occasional spikes are basically ignored, as they are clearly outnumbered. In practice, this
causes search heuristics to deliver unstable results (unpublished observations using the BDe
score). However, this is neither a failure of the search heuristic nor the scoring function,
as can be seen in the most extreme situation where all variables are constants: Any combi-
nation of parents pa(X (i)) can then be used to predict X (i) in (7) equally well. For neural
data with rare spike events – appearing to be nearly constant – it is thus likely that several
equally high scoring networks exist, although their connectivity might substantially differ.
Therefore learning DBNs from single unit spike train data may require a scoring function
which is particularly adapted by accounting for the semantics of states and weighting them
accordingly. While the model underlying the BD scores is fixed, the MDL principle (or BIC
equivalently) can be applied with a variety of paradigms. It thus seems likely that they can
be adopted to data with low spiking rates in order to infer DBNs.

The SSS has been specifically designed for spike train data and assigns high score val-
ues to networks if parent nodes’ spikes are good predictors of child spikes. In detail: High
scores are assigned to parents whose spikes precede those of the child reliably with the right
timing - at the beginning of the lag-window. How well the timing matches is determined by
snapshots of the parents’ activity level, which are normalised in order to control for random
matchings due to constantly high activity of the parents. Periods in the data in which neither
the child nor its parents show any activity do not affect the score value. This is because
(1) no snapshots are triggered and (2) a zero activity level does not affect normalisation.
Thus, spiking and non-spiking bins in the data are distinguished, and this enables the SSS to

26

account for low spiking rates and the biological significance of action potentials. The design
of the score further places emphasis on computational efficiency, in order to facilitate eval-
uation of large data-sets of higher dimension, as is required for realistic data sets. The score
can be used to learn DBNs or dependencies like shown in (6) at the same computational
cost. The revealed stochastic relations are visualised as excitatory causal networks to assist
the interpretation of the data. Such a method would be useful for other neural time series
data types as well and, as indicated earlier, modifications to the activity level calculation
could render an appropriate adaptation of the SSS possible.

Further research is needed to fully investigate the score’s characteristics and potential
usage. In particular, neural simulations of different network topologies and scales are nec-
essary to picture and understand the score. Additionally, it will be interesting to see how the
SSS concept can be harnessed for the detection of inhibitory effects; likewise, it might prove
useful for synchrony detection. In order to apply the SSS to different types of time series
data, adequate transformation of these data to activity levels and snapshot triggers need to
be developed. Future work will address these questions.

The Python [77] implementation of the SSS is available for download as supplementary
information and from the web-site http://biology.st-andrews.ac.uk/vannesmithlab.
In the future, the method will also be provided as a web-service on the platform built by the
Code Analysis, Repository and Modelling for E-Neuroscience (CARMEN) project.

Acknowledgements We thank two anonymous reviewers for a thorough review and helpful comments.
This work was supported by the CARMEN e-science project (www.carmen.org.uk) funded by the EPSRC
(EP/E002331/1).

References

1. L. F. Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain research
bulletin, 50(5-6):303–4, 1999.

2. A. M. H. J. Aertsen, G. L. Gerstein, M. K. Habib, and G. Palm. Dynamics of neuronal firing correlation
- modulation of effective connectivity. Journal of Neurophysiology, 61(5):900–917, 1989.

3. E. M. Airoldi. Getting started in probabilistic graphical models. PLoS Computational Biology,
3(12):e252, 2007.

4. D. Ashlock. Evolutionary Computation for Modeling and Optimization. Springer, 2004.
5. L. Astolfi, F. Cincotti, D. Mattia, M. G. Marciani, L. A. Baccalá, F. D. Fallani, S. Salinari, M. Ursino,

M. Zavaglia, and F. Babiloni. Assessing cortical functional connectivity by partial directed coherence:
Simulations and application to real data. IEEE Transactions on Biomedical Engineering, 53(9):1802–
1812, 2006.

6. L. A. Baccalá and K. Sameshima. Partial directed coherence: a new concept in neural structure determi-
nation. Biological Cybernetics, 84(6):463–74, 2001.

7. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Program-
ming, Genetic Algorithms. Oxford University Press, USA, 1996.

8. A. Borst and F. E. Theunissen. Information theory and neural coding. Nature Neuroscience, 2(11):947–
57, 1999.

9. E. N. Brown, R. E. Kass, and P. P. Mitra. Multiple neural spike train data analysis: state-of-the-art and
future challenges. Nature Neuroscience, 7(5):456–461, 2004.

10. J. Burge, T. Lane, H. Link, S. Qiu, and V. P. Clark. Discrete dynamic Bayesian network analysis of fMRI
data. Human Brain Mapping, 30(1):122–37, 2009.

11. A. J. Cadotte, T. B. DeMarse, P. He, and M. Ding. Causal measures of structure and plasticity in simu-
lated and living neural networks. PLoS ONE, 3(10):e3355, 2008.

12. G. Casella and E. I. George. Explaining the Gibbs sampler. The American Statistician, 46(3):167–174,
1992.

13. V. Cerny. Thermodynamical approach to the traveling salesman problem: An efficient simulation algo-
rithm. Journal of Optimization Theory and Applications, 45(1):41–51, 1985.

27

14. E. S. Chornoboy, L. P. Schramm, and A. F. Karr. Maximum-likelihood identification of neural point
process systems. Biological Cybernetics, 59(4-5):265–275, 1988.

15. G. F. Cooper and E. Herskovits. A Bayesian method for the induction of probabilistic networks from
data. Machine Learning, 9(4):309–347, 1992.

16. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Greedy algorithms. In Introduction to
Algorithms, pages 370–404. MIT Press, 2nd edition, 2001.

17. R. T. Cox. Probability, frequency and reasonable expectation. American Journal of Physics, 14(1):1–13,
1946.

18. P. Dayan and L. F. Abbott. Theoretical neuroscience: computational and mathematical modeling of
neural systems. The MIT Press, 1st paperback edition, 2005.

19. R. Eberhart, Y. Shi, and J. Kennedy. Swarm Intelligence. Artificial Intelligence. Morgan Kaufmann,
2001.

20. M. Eichler. On the evaluation of information flow in multivariate systems by the directed transfer func-
tion. Biological Cybernetics, 94(6):469–82, 2006.

21. S. Eldawlatly, Y. Zhou, R. Jin, and K. Oweiss. Reconstructing functional neuronal circuits using dynamic
Bayesian networks. In 30th Annual International IEEE Engineering in Medicine and Biology Society
(EMBS) Conference, volume 2008, pages 5531–4, Vancouver, British Columbia, Canada, 2008.

22. W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. John Wiley and Sons,
3rd edition, 1950.

23. N. Friedman. Learning belief networks in the values and hidden variables. In 14th International Con-
ference on Machine Learning (ICML 1997), pages 125–133, Nashville, Tennessee, USA, 1997. Morgan
Kaufmann.

24. N. Friedman, M. Linial, I. Nachman, and D. Pe’er. Using Bayesian networks to analyze expression data.
Journal of Computational Biology, 7(3-4):601–620, 2000.

25. K. J. Friston. Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Map-
ping, 2:56–78, 1994.

26. G. L. Gerstein and A. M. Aertsen. Representation of cooperative firing activity among simultaneously
recorded neurons. Journal of Neurophysiology, 54(6):1513–28, 1985.

27. G. L. Gerstein and D. H. Perkel. Simultaneously recorded trains of action potentials: analysis and func-
tional interpretation. Science, 164(881):828–30, 1969.

28. G. L. Gerstein, D. H. Perkel, and J. E. Dayhoff. Cooperative firing activity in simultaneously recorded
populations of neurons: detection and measurement. Journal of Neuroscience, 5(4):881–9, 1985.

29. W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cam-
bridge University Press, Cambridge, 1st edition, 2002.

30. Z. Ghahramani. Learning dynamic Bayesian networks. Adaptive Processing of Sequences and Data
Structures, 1387:168–197, 1998.

31. C. W. J. Granger. Investigating causal relations by econometric models and cross-spectral methods.
Econometrica, 37(3):424–438, 1969.

32. W. K. Hastings. Monte-Carlo sampling methods using Markov chains and their applications. Biometrika,
57(1):97–109, 1970.

33. D. O. Hebb. The Organization of Behavior. Wiley, New York, 1949.
34. D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian networks - the combination of

knowledge and statistical-data. Machine Learning, 20(3):197–243, 1995.
35. M. O. Heuschkel, M. Fejtl, M. Raggenbass, D. Bertrand, and P. Renaud. A three-dimensional multi-

electrode array for multi-site stimulation and recording in acute brain slices. Journal of Neuroscience
Methods, 114(2):135–48, 2002.

36. P. Jezzard, P. M. Matthews, and S. M. Smith. Functional MRI: An Introduction to Methods. Oxford
University Press, Oxford, 1st edition, 2001.

37. J. L. Johnson and J. P. Welsh. Independently movable multielectrode array to record multiple fast-spiking
neurons in the cerebral cortex during cognition. Methods, 30(1):64–78, 2003.

38. Z. W. Junning Li and M. McKeown. Dynamic Bayesian networks (DBNs) demonstrate impaired brain
connectivity during performance of simultaneous movements in Parkinson’s disease. In 3rd IEEE Inter-
national Symposium on Biomedical Imaging: Nano to Macro, pages 964–967, 2006.

39. M. J. Kaminski and K. J. Blinowska. A new method of the description of the information flow in the
brain structures. Biological Cybernetics, 65(3):203–10, 1991.

40. J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE International Conference on Neural
Networks, volume 4, pages 1942–1948, Perth, WA, Australia, 1995.

41. B. W. Kernighan and D. M. Ritchie. The C Programming Language. Prentice Hall, 2nd edition, 1988.
42. S. Kim, S. Imoto, and S. Miyano. Dynamic Bayesian network and nonparametric regression for nonlinear

modeling of gene networks from time series gene expression data. Biosystems, 75(1-3):57–65, 2004.

28

43. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

44. W. Lam and F. Bacchus. Learning Bayesian belief networks: an approach based on the MDL principle.
Computational Intelligence, 10(3):269–293, 1994.

45. S. L. Lauritzen. Graphical Models. Oxford University Press, Oxford, 1996.
46. J. Li, Z. J. Wang, and M. J. McKeown. A framework for group analysis of fMRI data using dynamic

Bayesian networks. In Annual International Conference of the IEEE Engineering in Medicine and Biol-
ogy Society, pages 5992–5, 2007.

47. B. G. Lindsey and G. L. Gerstein. Two enhancements of the gravity algorithm for multiple spike train
analysis. Journal of Neuroscience Methods, 150(1):116–127, 2006.

48. D. Madigan and A. E. Raftery. Model selection and accounting for model uncertainty in graphical models
using Occam’s window. Journal of the American Statistical Association, 89(428):1535–1546, 1994.

49. V. A. Makarov, F. Panetsos, and O. de Feo. A method for determining neural connectivity and inferring
the underlying network dynamics using extracellular spike recordings. Journal of Neuroscience Methods,
144(2):265–79, 2005.

50. P. M. Matthews and P. Jezzard. Functional magnetic resonance imaging. Journal of Neurology Neuro-
surgery and Psychiatry, 75(1):6–12, 2004.

51. N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equation of state calculation by
fast computing machines. Journal of Chemical Physics, 21:1087–1092, 1953.

52. K. Murphy and S. Mian. Modelling gene expression data using dynamic Bayesian networks. Technical
report, MIT Artificial Intelligence Laboratory, 1999.

53. K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, 2002.
54. J. Neyman and E. S. Pearson. On the problem of the most efficient tests of statistical hypotheses. Philo-

sophical Transactions of the Royal Society of London, Series A, 231:289–337, 1933.
55. P. L. Nunez and R. Srinivasan. Electroencephalogram. Scholarpedia, 2(2):1348, 2007.
56. D. Q. Nykamp. Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied

Mathematics, 65(6):2005–2032, 2005.
57. H. Oka, K. Shimono, R. Ogawa, H. Sugihara, and M. Taketani. A new planar multielectrode array

for extracellular recording: application to hippocampal acute slice. Journal of Neuroscience Methods,
93(1):61–7, 1999.

58. M. Okatan, M. A. Wilson, and E. N. Brown. Analyzing functional connectivity using a network likeli-
hood model of ensemble neural spiking activity. Neural Computation, 17(9):1927–1961, 2005.

59. J. Pearl. Causality: Models, Reasoning, and Inference. Cambridge University Press, Cambridge, UK,
2000.

60. D. H. Perkel, G. L. Gerstein, and G. P. Moore. Neuronal spike trains and stochastic point processes. II.
Simultaneous spike trains. Biophysical Journal, 7(4):419–40, 1967.

61. B. E. Perrin, L. Ralaivola, A. Mazurie, S. Bottani, J. Mallet, and F. d’Alche Buc. Gene networks inference
using dynamic Bayesian networks. Bioinformatics, 19 Suppl 2:ii138–48, 2003.

62. J. W. Pillow, J. Shlens, L. Paninski, A. Sher, A. M. Litke, E. J. Chichilnisky, and E. P. Simoncelli. Spatio-
temporal correlations and visual signalling in a complete neuronal population. Nature, 454(7207):995–
U37, 2008.

63. J. C. Rajapakse, Y. Wang, X. Zheng, and J. Zhou. Probabilistic framework for brain connectivity from
functional MR images. IEEE Transactions on Medical Imaging, 27(6):825–33, 2008.

64. J. C. Rajapakse and J. Zhou. Learning effective brain connectivity with dynamic Bayesian networks.
Neuroimage, 37(3):749–60, 2007.

65. F. Rieke, D. Warland, R. d. R. van Steveninck, and W. Bialek. Spikes: exploring the neural code. MIT
Press, 1st paperback edition, 1999.

66. C. P. Robert and G. Casella. The multi-stage Gibbs sampler. In Monte Carlo statistical methods, pages
337–370. Springer, 2nd edition, 2004.

67. K. Sameshima and L. A. Baccalá. Using partial directed coherence to describe neuronal ensemble inter-
actions. Journal of Neuroscience Methods, 94:93–103, 1999.

68. T. Sato, T. Suzuki, and K. Mabuchi. A new multi-electrode array design for chronic neural recording,
with independent and automatic hydraulic positioning. Journal of Neuroscience Methods, 160(1):45–51,
2007.

69. G. Schwarz. Estimating dimension of a model. Annals of Statistics, 6(2):461–464, 1978.
70. V. A. Smith, J. Yu, T. V. Smulders, A. J. Hartemink, and E. D. Jarvis. Computational inference of neural

information flow networks. PLoS Computational Biology, 2(11):e161, 2006.
71. O. Sporns, D. R. Chialvo, M. Kaiser, and C. C. Hilgetag. Organization, development and function of

complex brain networks. Trends in Cognitive Sciences, 8(9):418–25, 2004.
72. R. B. Stein. A theoretical analysis of neuronal variability. Biophysical Journal, 5:173–94, 1965.

29

73. C. Stosiek, O. Garaschuk, K. Holthoff, and A. Konnerth. In vivo two-photon calcium imaging of neu-
ronal networks. Proceedings of the National Academy of Sciences of the United States of America,
100(12):7319–7324, 2003.

74. D. Y. Takahashi, L. A. Baccalá, and K. Sameshima. Connectivity inference between neural structures
via partial directed coherence. Journal of Applied Statistics, 34(10):1259–1273, 2007.

75. W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A point process framework
for relating neural spiking activity to spiking history, neural ensemble, and extrinsic covariate effects.
Journal of Neurophysiology, 93(2):1074–1089, 2005.

76. V. Tsytsarev, M. Taketani, F. Schottler, S. Tanaka, and M. Hara. A new planar multielectrode array:
recording from a rat auditory cortex. Journal of Neural Engineering, 3(4):293–8, 2006.

77. G. van Rossum and et al. Python language website, http://www.python.org/.
78. D. Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85, 1994.
79. M. Zou and S. D. Conzen. A new dynamic Bayesian network (DBN) approach for identifying gene

regulatory networks from time course microarray data. Bioinformatics, 21(1):71–9, 2005.

