
Hierarchical Bayesian models in ecology: Reconstructing species interaction
networks from non-homogeneous species abundance data

Andrej Aderhold a,⁎, Dirk Husmeier b,e, Jack J. Lennon c, Colin M. Beale d, V. Anne Smith a

a School of Biology, University of St Andrews, St Andrews, UK
b School of Mathematics and Statistics, University of Glasgow, Glasgow, G12 8QW, UK
c The James Hutton Institute Craigiebuckler, Aberdeen AB15 8QH, UK
d Department of Biology (Area 18), P.O. Box 373, University of York, York YO10 5YW, UK
e Biomathematics & Statistics Scotland (BioSS), JCMB, The King's Building, Edinburgh EH93JZ, UK

a b s t r a c ta r t i c l e i n f o

Article history:
Received 17 February 2012
Received in revised form 8 May 2012
Accepted 10 May 2012
Available online xxxx

Keywords:
Species interactions
Bayesian hierarchical model
Multiple changepoint process
Reversible jump Markov chain Monte Carlo
Niche model
Plant ground coverage data

The relationships among organisms and their surroundings can be of immense complexity. To describe and
understand an ecosystem as a tangled bank, multiple ways of interaction and their effects have to be considered,
such as predation, competition,mutualism and facilitation. Understanding the resulting interaction networks is a
challenge in changing environments, e.g. to predict knock-on effects of invasive species and to understand how
climate change impacts biodiversity. The elucidation of complex ecological systems with their interactions will
benefit enormously from the development of newmachine learning tools that aim to infer the structure of inter-
action networks fromfield data. In the present study, we propose a novel Bayesian regression andmultiple chan-
gepoint model (BRAM) for reconstructing species interaction networks from observed species distributions. The
model has been devised to allow robust inference in the presence of spatial autocorrelation and distributional
heterogeneity. We have evaluated the model on simulated data that combines a trophic niche model with a
stochastic population model on a 2-dimensional lattice, and we have compared the performance of our model
with L1-penalized sparse regression (LASSO) and non-linear Bayesian networks with the BDe scoring scheme.
In addition, we have applied our method to plant ground coverage data from the western shore of the Outer
Hebrides with the objective to infer the ecological interactions.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Understanding the response of ecosystems to perturbation is of
paramount importance in a world with diminishing arable and natural
land, where global climate change, invasive species, and changing agri-
cultural practices impact world food supplies and biodiversity (Foley
et al., 2005). But such understanding is not simple: ecosystems are a
complex network of interactions. Modifying populations of one species
can produce unexpected effects in others (Henneman and Memmott,
2001); entire ecosystems can respond to changing pressures by shifting
to alternative states (Beisner et al., 2003). In order to understand and
predict such phenomena, it is necessary to unravel the ecological
networks underlying ecosystem's stability and fragility (Dunne et al.,
2002; O'Gorman and Emmerson, 2009).

Revealing such networks, however, might seem prohibitively
difficult when even tracing interactions in simple food webs requires
extraordinarily detailed fieldwork (e.g. Memmott et al., 2000). Direct
observation of trophic interactions ignores other relationships, such

as inter-specific competition and mutualism, when such interactions
may play significant roles in network dynamics (Cheney and Côté,
2005; Maestre et al., 2005; Valiente-Banuet and Verdú, 2008; Werner
and Peacor, 2003). Recognizing this, ecologists have attempted to
measure existence of such indirect interactions (e.g. Schmitz et al.,
2004; van Veen et al., 2009), but quantifying all the effects and iden-
tifying all the unexpected interactions within complex real ecosys-
tems may be beyond the scope of traditional fieldwork.

Computational inference of ecological networks presents an alternate
route to unravel ecosystem interactions. Traces of the interactions among
species, both trophic and other types, should be present in the resulting
distribution of individuals in space. Such species counts are available for
a range of ecosystems (e.g. Hagemeijer and Blair, 1997). Computational
network inference from such observational datasets has recently been
developed in molecular systems biology, e.g. discovering transcriptional
regulatory networks from datasets on gene expression (Friedman et al.,
2000) and neural information flow from brain activity (Smith et al.,
2006). Thesemethods present an avenue for revealing ecological interac-
tions from, rather than observation of interaction, more easily obtainable
data on species incidence (Amstrup et al., 2008; Faisal et al., 2010; Milns
et al., 2010; van Oijen et al., 2010). Also, by inferring interactions based
upon their influence on species distribution, there is no a priori restriction
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to specific relationship types, allowing competition and other relation-
ships to be revealed alongside trophic interactions.

The objective of the present paper is to adapt a method recently
proposed in computational systems biology (Lèbre et al., 2010) for in-
ferring gene interactions from time series of gene expression profiles
to the task of inferring species interaction networks from spatial spe-
cies abundance data, as typically obtained from ecological surveys of
fieldwork. The model by Lèbre et al. (2010) is a non-homogeneous
dynamic Bayesian network, which combines the Bayesian hierarchi-
cal regression model of Andrieu and Doucet (1999) with a multiple
changepoint process, as proposed by Punskaya et al. (2002), and pur-
sues Bayesian inference with reversible jump Markov chain Monte
Carlo (RJMCMC) (Green, 1995). We adapt this model to the inference
of ecological networks in three ways. First, we allow for the fact that
we have spatial rather than temporal data. Second, we expand the 1-
dimensional changepoint process to two dimensions, by introducing
two a priori independent changepoint processes in perpendicular direc-
tions. Third, we correct for spatial auto-correlation by introducing a par-
ent node (in Bayesian network terminology) explicitly representing the
spatial neighborhood of a node. To evaluate the performance of the
model,we generate data froman ecological simulation study,which com-
bines a trophic nichemodel of Lotka–Volterra typepredator–prey interac-
tions with a stochastic population model on a 2-dimensional lattice. We
have compared the performance of our model with L1-penalized sparse
regression (LASSO) and non-linear Bayesian networks (BDe score).

2. Model

Our model is a network in which nodes represent species, and edges
(i.e. connections betweennodes) represent potential species interactions.
We aim to reconstruct the network from spatial species abundance
profiles based on the rationale that if species interact, a variation in the
abundance of one species should lead to a variation in the abundance of
the interacting species. Wemodel this mathematically with an approach
based on Bayesian regression, which intrinsically incorporates a regular-
ization effect that discourages the prediction of spurious interactions.We
further improve this by explicitly correcting for spatial autocorrelation of
the abundance profiles as well as by allowing for unobserved latent
variables via a spatial changepoint process. Inference is carried out by
sampling the interaction network structure as well as the number and
location of spatial changepoints from the posterior distribution, which
is effected with state-of-the-art Monte Carlo algorithms (RJMCMC:
reversible jump Markov chain Monte Carlo).

2.1. Interaction network

The interaction network is represented by a directed graph G ¼
π1;…; πNf g with N species as nodes n∈{1,…, N}, where πn denotes
the so-called parents of node n, that is the set of nodes with a directed
edge pointing to n. Gn is the subnetwork associated with target species
n, which is determined by its parent set πn. A node cannot be contained
in its ownparent set, n∉πn, i.e. we rule out self-interactions related to e.g.
cannibalism. The species are observed or surveyed at T1×T2 locations de-
fined by their (orthogonal) coordinates (x1, x2), at which their abun-
dance levels y={yn(x1, x2)}1≤n≤N, 1≤x1≤T1, 1≤x2≤T2} are determined.

2.2. Multiple changepoints

The regulatory relationships among the species may be influenced
by latent variables, which are represented by spatial changepoints.
We assume that latent effects in close spatial proximity are likely to
be similar, but locations where spatially close areas are not similar are
distinguished by changepoints. They are modeled with two a priori in-
dependent multiple changepoint processes along the two orthogonal
spatial directions: ξi=(ξi1,…, ξiki), ξi0:=1, ξiki+1:=Ti, and i∈{1, 2}.
The vector ξi thus contains a (a priori unknown) number of ki

changepoints, and the changepoint vectors ξ1 and ξ2 partition the space
into Z=∏ i=1

2 (ki+1) non-overlapping segments, demarcated by the
changepoints. We denote the latent variable associated with a segment
by h∈{1,…, Z}. If two locations (x1, x2) and ~x1; ~x2ð Þ are in the same seg-
ment, ξa1≤x1; ~x1bξ

aþ1
1 ; ξb2≤x2; ~x2bξ

bþ1
2 ; then they are assigned with the

same latent variable: h x1; x2ð Þ ¼ h ~x1; ~x2ð Þ. We define an isomorphism
between segments and changepoints such that segment h is demarcated
by changepoints {ξ1[f1(h)−1], ξ1f1(h), ξ2[f2(h)−1], ξ2f2(h)}.

2.3. Regression model

For all species n, the random variable Yn(x1, x2) refers to the abun-
dance of species n at location (x1, x2). Within any segment h, this
abundance depends on the abundance levels of the species in the parent
set of species n, πn, whichwemodelwith a segment specific linear regres-
sion model. We define the set of parameters {(anmh )m∈0..N, σn

h},
ahnm∈R; σh

n > 0. For all m≠0, anmh =0 if m∉πn. For all species n, for all
locations (x1, x2) in segment h, Yn(x1, x2) depends on the N variables
{Ym(x1, x2)}1≤m≤N, m≠n according to:

Yn x1; x2ð Þ ¼ ahn0 þ∑m∈πn
ahnmYm x1; x2ð Þ þ εn x1; x2ð Þ ð1Þ

where the latent variable h depends on the location (x1, x2) and the
changepoint vectors ξ1 and ξ2 are defined in the previous subsection.
The noise εn(x1, x2) is assumed to be Gaussian withmean 0 and variance
(σn

h)2, εn(x1, x2)~N(0, (σn
h)2). We define anh=(anmh )n∈0..N to denote the

vector of all regression parameters of species n. This includes the param-
eters defining the strength of interactions with other species m, anmh , as
well as a species-specific offset term, an0h .

2.4. Spatial autocorrelation

Spatial autocorrelation, the phenomenon that observations at
nearby locations are more similar than observations at more distant
locations, is nearly ubiquitous in ecology and can have a strong im-
pact on statistical inference (Dale and Fortin, 2002; Lennon, 2000).
In our case, spatial autocorrelation could lead to the identification of
spurious interactions as a mere consequence of two species co-
occurring in similar geographical regions. To incorporate potential
spatial autocorrelation into the model, we follow an approach pro-
posed by Faisal et al. (2010) and illustrated in Fig. 1b. The idea is to
connect each node in the network to an enforced parent node that
represents the average population at neighboring cells, weighted in-
versely proportional to the distance of the neighbors:

An x1; x2ð Þ ¼
∑ ~x1 ; ~x2ð Þ∈N x1 ; x2ð Þd

−1 x1; x2ð Þ; ~x1; ~x2ð Þ½ &Yn ~x1; ~x2ð Þ
∑ ~x1 ; ~x2ð Þ∈N x1 ; x2ð Þd

−1 x1; x2ð Þ; ~x1; ~x2ð Þ½ &
ð2Þ

whereN x1; x2ð Þ is the spatial neighborhood of location (x1, x2) (e.g. the
four nearest neighbors), and d x1; x2ð Þ; ~x1; ~x2ð Þ½ & is the Euclidean dis-
tance between (x1, x2) and ~x1; ~x2ð Þ. The value of An(x1, x2), weighted
by an additional weight anAh , will be included in Eq. (1):

Yn x1; x2ð Þ ¼ ahn0 þ∑m∈πn
ahnmYm x1; x2ð Þ þ ahnAAn x1; x2ð Þ þ εn x1; x2ð Þ: ð3Þ

In this way the abundance of species n at location (x1, x2) is, in
the first instance, determined by the spatial neighborhood. Only if
the explanatory power of the latter is not sufficient will there be an
incentive for the inference scheme to include further edges related
to species interactions.

2.5. Prior

To encourage sparse network structures, we impose a truncated
Poisson prior with mean Λ and maximum !m ¼ 5 on the number mn

2 A. Aderhold et al. / Ecological Informatics xxx (2012) xxx–xxx

Please cite this article as: Aderhold, A., et al., Hierarchical Bayesian models in ecology: Reconstructing species interaction networks from non-
homogeneous species abundance data, Ecological Informatics (2012), doi:10.1016/j.ecoinf.2012.05.002

http://dx.doi.org/10.1016/j.ecoinf.2012.05.002


of parents for node n: P mnjΛð Þ∝ Λmn

mn !
1 mn≤ !mf g. There was no noticeable

difference in performance compared to higher settings of !m. Condi-
tional on mn, the prior for the parent set πn is a uniform distribution
over all parent sets with cardinality mn: P(πn‖πn|=mn)=1/(mn

N−1).
The overall prior on the network structure G is given by factorization
and marginalization:

P GjΛð Þ ¼ ∏N
n¼1P πnjΛð Þ;

P πnjΛð Þ ¼ ∑ !m
mn¼1P πnjmnð ÞP mnjΛð Þ:

ð4Þ

For both spatial directions i∈{1, 2}, the ki+1 segments are delimited
by ki changepoints, where ki is distributed a priori as a truncated Poisson
random variable with mean λ and maximum !ki ¼ Ti−1: P kijλð Þ∝
λki

ki !
1 ki≤!kif g. Conditional on ki changepoints, the changepoint position

vector ξi=(ξi1,…, ξiki) takes non-overlapping integer values, which we
take to be uniformly distributed a priori. There are (Ti−1) possible
positions for the ki changepoints, thus vector ξi has prior density

P ξijkið Þ ¼ 1= Ti −1
ki

! "
. Conditional on the parent set πn of size mn, the

mn+2 regression coefficients, denoted by anh=(an0h , anAh , (anmh )m∈πn),
are assumed zero-mean multivariate Gaussian distributed with covari-
ance matrix (σn

h)2Σn,

P ahn
###πn; σh

n

$ %
¼ 2π σh

n

$ %2
Σn;h

###
###
−1

2
exp −

ahn
h i†

Σ−
n; ha

h
n

2 σh
n

& '2

0

B@

1

CA ð5Þ

where the symbol † denotes matrix transposition, Σn, h=δ−2Dn, h
† (y)

Dn, h(y) and Dn, h(y) is the sn, h=∏ i=1
2 (ξifi(h)−ξifi(h)−1)×(mn+2)

matrix whose first column is a vector of 1 s, for the constant in Eq. (1),
the second column is a vector of autocorrelation variables, defined in
Eq. (2), and the remaining columns contain the observed abundance
values yn(x1, x2) for all species n and all locations (x1, x2) in segment h:
ξifi(h)−1≤xibξifi(h), i∈{1, 2}. This so-called g-prior is widely used
in Bayesian statistics; see e.g. Andrieu and Doucet (1999). Finally, the
conjugate prior for the variance (σn

h)2 is the inverse gamma distribution,

P σh
n

$ %2
! "

¼ IG υ0; γ0ð Þ. Following Lèbre et al. (2010), we set the

hyper-hyperparameters for shape, υ0=0.5, and scale, γ0=0.05, to
fixed values that give a vague distribution. The termsλ andΛ canbe inter-
preted as the expectednumber of changepoints andparents, respectively,
and δ2 is the expected signal-to-noise ratio. Following Lèbre et al. (2010),
these hyperparameters are drawn from vague conjugate hyperpriors,
which are in the (inverse) gamma distribution family: P Λð Þ ¼ P λð Þ ¼
Ga 0:5;1ð Þ and P δ2

$ %
¼ IG 2; 0:2ð Þ.

2.6. Posterior

Eq. (3) implies that the likelihood is:

P yhn
###ξ f 1 hð Þ−1

1 ; ξ f 1 hð Þ
1 ; ξ f 2 hð Þ−1

2 ; ξ f 2 hð Þ
2 ; G; ahn; σh

n

$ %
¼

ffiffiffiffiffiffi
2π

p
σh

n

$ %−sn; h exp −
yhn−Dn; h yð Þahn

$ %†
yhn−Dn; h yð Þahn

$ %

2 σh
n

& '2

0

B@

1

CA:

From Bayes theorem, the posterior distribution is given by the follow-
ing equation, where all prior distributions have been defined above:

P k1; k2; ξ1; ξ2; G; a; σ2; λ; Λ ; δ2jy
$ %

∝P δ2
$ %

P λð ÞP Λð ÞP GjΛð Þ

∏
2

i¼1
P kijλð ÞP ξijkið Þ∏

Z

h¼1
∏
N

n¼1
P σh

n

h i2! "
P ahn

###πn; σh
n

h i2
; δ2

! "

P yhn
###ξf 1 hð Þ−1

1 ; ξf 1 hð Þ
1 ; ξf 2 hð Þ−1

2 ; ξf 2 hð Þ
2 ; G; ahn; σh

n

$ %
:

ð6Þ

2.7. Inference

An attractive feature of the chosen model is that the margin-
alization over the parameters a={anh, 1≤n≤N, 1≤h≤Z} and σ2=
{(σn

h)2, 1≤n≤N, 1≤h≤Z} in the posterior distribution of Eq. (6) is
analytically tractable (Andrieu and Doucet, 1999; Lèbre et al., 2010):

P k1; k2; ξ1; ξ2; G; λ; Λ ; δ2jy
$ %

¼

∫P k1; k2; ξ1; ξ2; G; a; σ2; λ; Λ ; δ2jy
$ %

dadσ2:
ð7Þ

The number of changepoints and their location, k1, k2, ξ1, ξ2, the
network structure G and the hyperparameters λ, Λ, δ2 can be sampled

from the posterior distribution P k1; k2; ξ1; ξ2; G; λ; Λ ; δ2jy
$ %

with

RJMCMC (Green, 1995), following the scheme described in Andrieu
and Doucet (1999), Lèbre et al. (2010) and Punskaya et al. (2002). By
marginalization and under the assumption of convergence, this gives
us a sample of networks from the posterior distribution P G yj Þð . By
further marginalization, we get the posterior probabilities of all species
interactions P(n→ñ|y), which defines a ranking of the interactions in
terms of posterior confidence. If the true network structure is known,
this ranking allows the computation of the areas under the ROC
(AUROC) and precision-recall (AUPRC) curves (Davis and Goadrich,
2006), which are two measures widely used in the systems biology
literature to quantify the overall network reconstruction accuracy
(Prill et al., 2010), with larger values indicating a better prediction
performance overall.

a b c

?

Fig. 1. Illustration of the improved method for ecological network reconstruction. Panel (a) illustrates the naive approach to modeling species interaction networks. Circles repre-
sent species (nodes), and arrows present species interactions (edges). Networks inferred from species abundance or population density data alone tend to contain many spurious
interactions. Panel (b): Allowing for spatial autocorrelation. Each node is hard-wired to an indicator node (square) that represents, via Eq. (2), the average population density in the
spatial neighborhood. Panel (c): Allowing for missing data. The model can be further improved by connecting all nodes to a latent node that represents unobserved effects. The
observation status at a node is, in the first instance, predicted by the spatial neighborhood and/or the latent variable. Only if the explanatory power of these correction schemes
is not sufficient will there be an incentive for the inference scheme to include further edges related to species interactions. Hence the effect of these corrections is to reduce the
network connectivity and filter out spurious interactions.
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3. Data

3.1. Synthetic data

For an objectivemeasure of network recovery,we tested themodel's
ability to recover the true network structure from test data generated
from a piecewise linear regression model following Eq. (1). The data
was partitioned by 2-dimensional fixed changepoints and the number
of grid cells was selected to be 15 in each direction. The changepoints
were inserted globally at locations 5 and 10 along each dimension.
The number of nodes n was set to 10 and the number of parents for
each node was sampled from a Poisson distribution. The regression
coefficients anh together with the bias a0h of each segment h were
sampled from a uniform distribution in the interval of [−1,−0.5] and
[0.5, 1.0]. The noise εn was sampled from a normal distribution.
Nodes without incoming edge were initialized to a Gaussian random
number. The values of the remaining nodes were calculated at each
grid cell following Eq. (1).

3.2. Ecological simulation of trophic interactions

For a more realistic evaluation, we followed Faisal et al. (2010)
and generated data from an ecological simulation that combines a
niche model (Williams andMartinez, 2000) with a stochastic population
model (Lande et al., 2003) in a 2-dimensional lattice.

3.2.1. Niche model
The niche model defines the structure of the trophic network and

has two parameters: the number of species N and the connectance (or
network density) defined as L/N2 where L is the number of interactions
(edges) in the network. Each species n is assigned a niche value xn,
drawn uniformly from [0, 1]. This gives an ordering of the species,
where higher values mean that species are higher up in the food
chain. For each species a niche range Rn is drawn from a beta distribu-
tion with expected value 2C (where C is the desired connectance),
and species n consumes all species falling in a range Rn that is placed
by uniformly drawing the center of the range from [Rn/2, xn]. An illus-
tration is given in Fig. 1 by Williams and Martinez (2000). Despite its
simplicity, it was shown by the same authors that the resulting net-
works share many characteristics with real food webs.

3.2.2. Stochastic population dynamics
The population model is defined by a stochastic differential equa-

tion where the dynamics of the log abundance Xn(t) of species n at
time t can be expressed as:

dXn tð Þ
dt

¼ rn þ
σdffiffiffiffiffiffiffiffiffiffiffi
eXn tð Þ

p dAn tð Þ
dt

þ σe
dBn tð Þ
dt

−

γXn tð Þ−Ω Xð Þ þ σE
dE tð Þ
dt

ð8Þ

where X is the set of all XN(t), rn is the growth rate of species n, σd is the
standard deviation of the demographic effect, An(t) is the species-
specific demographic effect, σe is the standard deviation of the
species-specific environmental effect, Bn(t) is the species-specific envi-
ronmental effect, γ is the intra-specific density dependence,Ω is the ef-
fect of competition for common resources, σE is the standard deviation
of the general environmental effect and E(t) is the general community
environment. The growth rates rn are location dependent (depending
on the cell of a rectangular grid), with a spatial pattern that is generated
by noise with spectral density fβ (with βb0, and f denoting the spatial
frequency at which the noise is measured). An illustration is given in
Fig. 2. To model species dispersal, we included an exponential dispersal
model, where the probability of a species moving from one location to
another is determined by the Euclidean distance between the locations.

3.2.3. Interactions
To incorporate the niche model, we modified the term Ω in Eq. (8)

to include predator–prey interactions in the Lotka–Volterra form. We
explored two versions: one where predatory interactions had a rela-
tively strong negative effect on prey (strong predation) and one
where the impact of predation was less severe (weak predation).
Strong predation is more akin to traditional predator-eat-prey inter-
actions, whereas weak predation is more akin to partially destructive
predation (e.g., grazing) or aggression.

3.2.4. Simulation
We applied this model to 10 species living in a 25-by-25 rectangu-

lar grid. We simulated the dynamics of this model for 3000 steps and
then recorded species abundance levels in all grid cells at the final
step; this corresponds to an ecological survey carried out at a fixed
moment in time. For each grid cell we counted the number of species
that went extinct. These counts were added up over all cells, yielding a
total number of extinctions. A simulation was rejected if these extinc-
tions exceeded the value of 50. This threshold was introduced in order
to compensate for the unrealistic artifact that is produced by prey
being not able to escape from predators beyond grid borders. For
each of the spatial β parameters displayed in Fig. 4, 30 surveys were
collected by running the simulation repeatedly with different net-
works and parameter initializations.

3.3. Real world plant data

We have applied the method to real-world data from Lennon et al.
(2011), including 106 vascular plants and 12 physical variables collected
from a 200 m×2162 m land strip at the western shore of the Outer
Hebrides representing a Machair vegetation. Samples were taken at 217
locations, each 1 m×1 m in size, equally distributedwith a 50 m spacing.
Plant samples were measured as ground coverage in percentage and
physical samples as absolute values (such as moisture, pH value, organic
matter and slope). The data was log-normal transformed after observing
substantial skewness in the distributions. Each sample pointwasmapped

Growth Rates for Spatial Beta −2 Growth Rates for Spatial Beta −4 Growth Rates for Spatial Beta −6

8
9

10
11

12

8
9

10
11

12

8
9

10
11

12

Fig. 2. Spatial distribution. The figure shows the spatial distribution of growth rates rn entering Eq. (8) as the spatial β parameter, defined in Section 3.2, decreases from−2 to−8. A
value of 0 would correspond to uniformly random noise, and −2 is Brownian noise.
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into a 2D grid (locations lacking data due to geographic limitations (lochs
and bare rocks) were left empty). The spatial autocorrelation value for
each plant and location was calculated from neighbors inside a radius
of 70 m. Since we are interested in plant interactions not mediated by
different preferences for soil characteristics, we defined that each plant
has all 12 physical soil variables as fixed input, i.e., permanent predictor
variables. We apply our 2D change-points model along the longitudinal
and latitudinal directions.

4. Comparative evaluation

To evaluate the network reconstruction accuracy for the simulated
data, where the true network structure is known, we proceed as follows.

Networks G are sampled from the posterior distribution P G yj Þð , and we
compute P(eik|y), the posterior probability of an edge eik between nodes
i and k,which is given by the proportion of networks in theMCMCsample
that contain this edge. Let E θð Þ ¼ eik P eik yj Þ > θð gjf denote the set of all
edges whose posterior probability exceeds a given threshold θ∈[0, 1],
fromwhichwe determine the number of true positive (TP), false positive
(FP), true negative (TN), and false negative (FN) edges.We then compute
the sensitivity=TP/(TP+FN), the specificity=TN/(TN+FP), and the
complementary specificity=1−specificity=FP/(TN+FP). Rather than
selecting an arbitrary value for the threshold θ, we repeat this scoring
procedure for all possible values of θ∈[0, 1], and plot the resulting sensi-
tivity scores against the corresponding complementary specificity scores.
This gives the so-called receiver operating characteristics (ROC) curve
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shown in Fig. 7. The diagonal line indicates the ROC curve under random
expectation. The line marked with “perfect predictor” indicates a per-
fect retrieval of all true edges without a single spurious edge. In general,
ROC curves are between these two extremes, with a larger area under
the ROC curve (AUROC) indicating a better performance. In particular,
random expectation corresponds to a value of AUROC=0.5, and a per-
fect predictor has an AUROC score of 1.0. An alternative approach,
which is preferred inmany practical applications, is to plot the precision
against the recall, where recall is just another name for sensitivity, and
precision is defined as the proportion of recovered interactions that are
correct, precision=TP/(TP+FP). The area under the precision-recall
curve, AUPRC, is again a measure of the global network reconstruction
accuracy,with a larger value indicating a better performance. Bothmea-
sures are widely applied in systems biology (Prill et al., 2010). They
have certain pros and cons, as e.g. discussed in Davis and Goadrich
(2006), and we therefore use them jointly in our evaluation.

We compared the performance of BRAM, which corresponds to
the model in Fig. 1c, with two alternative Bayesian regression models:
Bayesian regression without changepoints (BR, Fig. 1b) and Bayesian re-
gression without changepoints and without allowing for spatial autocor-
relation (BR-0, Fig. 1a). We included a comparison with L1-regularized
linear regression (LASSO: Tibshirani, 1996, 2011), using the optimization
algorithmproposed by Grandvalet (1998). Thismethod is widely applied
in molecular systems biology (van Someren et al., 2006), has been rec-
ommended to be used more widely in ecology (Dahlgren, 2010), and
was found to outperform all competing methods tested in Faisal et al.
(2010). The regularization parameterλ that controls the network sparsity
was inferred with 10-fold cross-validation, which led to better results
than optimizing the BIC score. The method produces edge weights indi-
cating the strength and sign of interactions among species. For obtaining
the ROC and precision-recall curves, we ranked the potential interactions
based on the absolute values of the non-zero interaction parameters. We
further included a comparison with a non-linear Bayesian network, as
implemented in the software package BANJO. We discretized the data
with Hartemink's pairwise mutual information method described by

Hartemink (2001) (implemented in R package bnlearn).1 Search was
done using simulated annealing with randomwalk proposals. Simulated
annealing was run on each dataset until convergence (typically 7 h of
CPU time). Using the top 100 high-scoring (BDe score) networks we
computed edge probabilities for ranking. Application of both LASSO and
BANJO included taking spatial autocorrelation into account. Finally, we
applied BRAM to real world data, revealing putative plant interactions.

5. Results and discussion

In the following, we show how BRAM outperforms the other tested
methods on synthetic data and on trophic simulations having spatial het-
erogeneity. On simulations lacking clear spatial heterogeneity, where
there is intrinsically no room for improvement with a changepoint
model, BRAM performs similarly to LASSO. Finally, we explore how
BRAM can be applied to real data for analyzing ecological systems.

On the synthetic data of Section 3.1, BRAMoutperforms all competing
schemes (Fig. 3). This is not surprising, in that the data have been gener-
ated from a process that is consistent with the modeling assumptions of
BRAM. However, it is reassuring both that the MCMC inference scheme
can successfully deal with the increased model complexity, and that it
leads to an improvement over the competing models in terms of actual
network reconstruction accuracy. For the data simulated from the
niche model, described in Section 3.2, we found that BRAM consistently
outperforms BR-0 and BANJO (Figs. 4–5). The improvement over BR-
0 confirms the importance of allowing for spatial autocorrelation in
ecological modeling. The improvement over BANJO underlines the
detrimental effect of the information loss inherent in data discretization.
The comparisonwith BR and LASSO leads to results that, on the face of it,
appear less conclusive. On the weak predation data BRAM tends to
outperform both BR and LASSO (Fig. 5), while the latter methods are
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Fig. 5. Comparative evaluation of five network reconstruction methods, weak predation. AUROC (left column) and AUPRC (right column) scores obtained on the trophic simulated data
described in Section 3.2. The simulationswere carried out as for Fig. 4, but with aweakened influence of the predators on the prey. See the caption of Fig. 4 for details. Panels: (a) Absolute
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1 This method yielded a better performance than quantile discretization. The num-
ber of discretization levels was chosen to be 3 based on empirical tests carried out by
Yu et al. (2004).
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on a par with BRAM on the strong predation data (Fig. 4). The difference
between the two datasets rests in the parameter choice for the trophic
interaction model described in Section 3.2. For weak predation, the
abundance profiles showed much stronger spatial oscillations than for
strong predation, or conversely: for strong predation, these abundance
profiles were much flatter than for weak predation. This suggests that
weak predation leads tomuch stronger spatial heterogeneity than strong
predation. LASSO showed, on average, the same performance as our sim-
plified model without changepoints. If there is no spatial heterogeneity,
then there is not much benefit in using a changepoint model. Hence,
for strong predation with little spatial heterogeneity, our proposed
model with changepoints does not outperform our simpler model with-
out changepoints, and consequently it also does not outperform LASSO.

This raises the question of why strong predation leads to less
spatial heterogeneity in the first place. Spatial heterogeneity implies
that in some regions prey aremore affected by predators than in others.
For strong predation these fluctuations are stronger than for weak

predation, in fact so strong that some prey are driven to extinction.
However, the way we set up the simulations is such that populations
with an extinction rate above a threshold are rejected. This ismotivated
by the limited size of the spatial area in our simulated ecological land-
scape. This limited size ‘traps’ prey in an unnatural way; high extinction
rates are rejected as being ecologically unrealistic. Populations with the
highest spatial heterogeneity are the ones most affected by extinction,
thus our rejection mechanism favors more homogeneous populations
when predation is strong, which we confirmed empirically by inspec-
tion of the spatial abundance profiles.

Our simulation studies thus suggest that in the absence of spatial
heterogeneity, when there is no room for improvement, BRAM shows
the same performance as LASSO (Fig. 5). This is reassuring, given that
LASSO was found to outperform all competing methods tested in Faisal
et al. (2010).When there is genuine spatial heterogeneity, BRAMoutper-
forms LASSO and all homogeneousmodels without changepoints (Fig. 4).

We have applied BRAM to the plant abundance data from the
ecological survey described in Section 3.3. We sampled interaction
network structures from the posterior distribution with MCMC and
computed the marginal posterior probabilities of the individual
potential species interactions, as described in Section 2.7. We kept
all species interactions with a marginal posterior probability above
0.2, resulting in 39 out of 106 species with relevant interactions in
the reconstructed network shown in Fig. 6. The right panel in this
figure shows therecovered network for a higher threshold of 0.5.
Negative interactions were displayed as dashed lines and positive
interactions as full lines. They were derived as mean edge weights
over all segments and multiple samples from the MCMC chain.

Since we had defined the 12 soil attributes as fixed predictors to
each plant, the interactions in this network represent plant–plant
interactions not mediated by similar soil preferences. This network
can lead to the formation of new ecological hypotheses. For instance,
Ranunculus bulbosus (species 14) is densely connected with five inter-
specific links above the threshold. Can that be related to its tolerance
for nutrient-poor soil and its preferred occurrence in species-rich
patches? There is a noticeable imbalance between positive and negative
interactions. The dominance of positive interactions in the Machair
vegetation is surprising given that much research in ecology has
emphasized the role of competition within communities, though this
is now changing as the potentially important role of facilitation is
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Fig. 6. Species interaction network inferred with BRAM from the ecological survey data described in Section 3.3. The graph displays species interactions with an inferred marginal pos-
terior probability of 0.2 (left panel) and 0.5 (right panel). Several soil attributeswere defined to befixed inputs to eachplant. Solid lines correspond to positive interactions (e.g.mutualism,
facilitation) and dashed to negative (e.g. resource competition). The species, represented by numbers, have been ordered phylogenetically, with the four groups of forbs (1–19), grasses
(20–29), rushes (30–33) and sedges (34–39). Full species names of the indices are listed in Appendix A.

Fig. 7. Receiver operating characteristic (ROC) curve. The figure shows the ROC curve for a
perfect predictor, random expectation, and a typical predictor between these two extremes.
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recognized (e.g. Bruno et al., 2003). It is worth remembering however
that the interactions observed in these data occur between species at
the same trophic level and as such are but one horizontal slice of a
much more complex hierarchical food web involving plant pathogens,
insect and mammalian herbivores and their predators. Nonetheless,
the relative lack of negative interactions is intriguing in that it suggests
that interspecific competition does not dominate this grassland system.

Fig. 8 shows, for a selected plant species, the marginal posterior
probability of a changepoint along the longitudinal direction as well
as the posterior co‐occurrence matrix, as introduced by Grzegorczyk
and Husmeier (2011). We clustered plant species on the basis of
these co‐occurrence matrices, using a simple clustering algorithm
(K-means with restarts) combined with the gap statistic for deciding
on the number of clusters (Hastie et al., 2001; Tibshirani et al., 2001).
The results are shown in Fig. 9. Ecologists could make use of clusters
like these to, e.g., identify species which share similar ecological
sensitivities. These results demonstrate that the proposed method

provides a useful tool for explorative data analysis in ecology with
respect to both species interactions and spatial heterogeneity.

6. Conclusions

We have addressed the problem of reconstructing species interaction
networks from species abundance data. To this end, we have proposed a
Bayesian model combining Bayesian piecewise linear regression with
multiple changepoint processes. The work is motivated by a model
recently proposed in the molecular systems biology literature (Lèbre
et al., 2010), but has been adapted from the temporal domain (gene
expression time series) to the spatial one (snapshot of species distribu-
tions in space, typical of ecological surveys). We have introduced and
tested two essential modifications, illustrated and motivated in Fig. 1.
First, we extended the 1-dimensional changepoint process from Lèbre
et al. (2010) by a 2-dimensional one,which corresponds to a richer latent
variable structure that allows modeling unobserved effects with smooth
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geographical variation. Second, we explicitly introduced an additional
enforced parent node for each species, which represents the average
species abundance from the spatial neighborhood of the current location
and thereby allows a correction for spatial autocorrelation.We tested our
model on data from a trophic simulation, which combines spatial species
dispersal with demographic and environmental effects and predator–
prey interactions of the Lotka–Volterra formdefinedby a trophic network
obtained from a niche model. Our results show that the proposed
model consistently outperforms a Bayesian regression model that does
not allow for spatial autocorrelation, as well as a non-linear Bayesian
network with the BDe score. Comparison with L1-regularized sparse
regression (LASSO) and Bayesian regression without changepoints
reveals the following. In the absence of pronounced spatial heterogeneity
(strong predation), when there is no room for improvement over the
homogeneous models, the performance of BRAM is on a par with
LASSO and Bayesian regression (Fig. 4). In the presence of spatial hetero-
geneity (weak predation), BRAMclear outperforms all competingmodels
(Fig. 5).

An application to plant species abundance data from a recent
ecological survey has demonstrated how the proposed method can
be used as a tool for hypothesis generation with respect to species
interactions and spatial distribution patterns. The main problem with
real data analysis is the ‘objective’ evaluation. In ecology, we currently
lack any gold standard, and the situation ismore difficult than inmolec-
ular systems biology, where several databases about molecular func-
tions and interactions exist. A more thorough evaluation of our model
on real data, which is the objective of ongoing work, needs to be done
in close collaboration with ecologists and will ultimately be based on
somewhat circumstantial evidence. For the purpose of method assess-
ment we will therefore pursue, in parallel, more extensive studies
based on simulated data, with the objective to make the underlying
models increasingly ecologically realistic.

6.1. Future work

There are two lines along which the current work can be extend-
ed. First, the present changepoint model is overly restrictive in the
sort of partitions that it produces. For situations in which the proper-
ties of the ecosystem change rapidly in some areas, but slowly in
others, the model will require a fine partition everywhere as the
edges of small squares in rapidly changing areas will extend and
bisect the large rectangles in slowly changing areas. This will yield
small squares everywhere and as a result more parameters are
required leading to less efficient inference. Furthermore, even if the
rate of change of parameters is uniform, if the geographic extent of
the ecosystem is large, then rectangles will be unnecessarily bisected
by edges extending from distant parts of the geography. Instead of a
changepointmodel inwhich the X and Y axis partitions are independent,
an interesting research project would be to use a Mondrian process, as
proposed by Roy and Tech (2008). This would allow the level of fineness
of the partition to vary, so that details about the partition in one area do
not unnecessarily extend to others. Alternatively, a Pitman–Yor processes
(Sudderth and Jordan, 2009) (i.e. a distant dependent Dirichlet process),
in analogy with image segmentation, could be attempted. Or, as the
locations of the points from which samples are collected are discrete, a
Dirichlet process mixture of Gaussians could be tried; this latter option
would have the advantage of not increasing the complexity of the
implementation.

The second potential improvement concerns the parameter prior.
For the current prior on the regression model (3) the coefficients are
assumed to be distributed according to a zero-mean multivariate
Gaussian with a covariance drawn from an inverse gamma distribution.
This prior is symmetric around 0 and hence does not discourage sign
changes. A justification can, in fact, be given based on various recent
ecology publications, which discuss how the nature of interactions
can change with varying environmental conditions (e.g. Callaway

and Walker, 1997; Choler et al., 2001; Maestre et al., 2009; Valiente-
Banuet and Verdú, 2008). Mutualistic interactions may become neutral
or antagonistic (i.e. involve a sign change), either temporarily or over
parts of the range of the interacting species, and this is not ruled out
by the prior we employ. However, the scenarios described above are,
overall, quite rare, and they are in particular unlikely to apply to trophic
interactions. In fact, if we know that, for two interacting species A and B,
A eats B in rectangle 1,wewould assume that it ismore likely that A also
eats B in rectangle 2 than the other way round. This prior notion can be
incorporated into the model by putting a species dependent prior on
the mean, and drawing the mean independently from this prior for
each rectangle. The implementation of this idea effectively adds an
extra layer to the Bayesian hierarchy, and has recently been investigat-
ed by Grzegorczyk and Husmeier (2012) in the context of molecular
systems biology.
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Appendix A. Table

Table A.1
Indices with full scientific names as appearing in Fig. 6. These
plants can be assigned to four taxonomies of forbs (1–19),
grasses (20–29), rushes (30–33) and sedges (34–39).

ID Name

1 Anagallis tenella
2 Calluna vulgaris
3 Drosera rotundifolia
4 Epilobium palustre
5 Galium verum
6 Hypochaeris radicata
7 Leontodon autumnalis
8 Lychnis flos-cuculi
9 Odontites verna
10 Plantago lanceolata
11 Potentilla erecta
12 Potentilla palustris
13 Prunella vulgaris
14 Ranunculus bulbosus
15 Ranunculus repens
16 Sagina procumbens
17 Succia pratensis
18 Trifolum repens
19 Viola riviniana
20 Agrostis capillaris
21 Aira praecox
22 Anthoxanthum odoratum
23 Cynosurus cristatus
24 Festuca rubra
25 Festuca vivipara
26 Holcus lanatus
27 Koeleria macrantha
28 Molinia caerulea
29 Poa pratensis
30 Juncus effusus
31 Juncus kochii
32 Luzula campestris
33 Luzula pilosa
34 Carex arenaria
35 Carex demissa
36 Carex dioica
37 Carex flacca
38 Carex nigra
39 Eriophorum angustifolum
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