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ABSTRACT

We assess the accuracy of three established regression
methods for reconstructing gene and protein regulatory
networks in the context of circadian regulation. Data are
simulated from a recently published regulatory network of
the circadian clock inArabidopsis thaliana, in which pro-
tein and gene interactions are described by a Markov jump
process based on Michaelis-Menten kinetics. We closely
follow recent experimental protocols, including the en-
trainment of seedlings to different light-dark cycles and
the knock-out of various key regulatory genes. Our study
provides relative assessment scores for the comparison of
state-of-the art regression methods, investigates the influ-
ence of systematically missing values related to unknown
protein concentrations and mRNA transcription rates, and
quantifies the dependence of the performance on the de-
gree of recurrency.

1. INTRODUCTION

Plants have to carefully manage their resources. The pro-
cess of photosynthesis allows them to utilize sunlight to
produce essential carbohydrates during the day. How-
ever, the earth’s rotation predictably removes sunlight, and
hence the opportunity for photosynthesis, for a significant
part of each day, and plants need to orchestrate the accu-
mulation, utilisation and storage of photosynthetic prod-
ucts in the form of starch over the daily cycle to avoid
periods of starvation, and thus optimise growth rates.

In the last few years, substantial progress has been
made to model the central processes of circadian regula-
tion, i.e. the mechanism of internal time-keeping that al-
lows the plant to anticipate each new day, at the molecular
level [1, 2]. Moreover, simple mechanistic models have
been developed to describe the feedback between carbon
metabolism and the circadian clock, by which the plant
adjusts the rates of starch accumulation and consumption
in response to changes in the light-dark cycle [3]. What is
needed is the elucidation of the detailed structure of the
molecular regulatory networks and signalling pathways
of these processes, by utilization and integration of tran-
scriptomic, proteomic and metabolic concentration pro-

files that become increasingly available from international
research collaborations like Agrogenomics1 and Timet2.

The inference of molecular regulatory networks from
postgenomic data has been a central topic in computa-
tional systems biology for over a decade. Following up
on the seminal paper in [5], a variety of methods have
been proposed [6], and several procedures have been pur-
sued to objectively assess the network reconstruction ac-
curacy [7, 8, 6]. The present study follows up on this
work and extends it in four important respects. Firstly,
to make the evaluation more targeted at the specific prob-
lem of inferring gene and protein interactions related to
circadian regulation, we take the central circadian clock
network inArabidopsis thaliana, as published in [2] , as
a ground truth for evaluation, and closely follow recent
experimental protocols for data generation, including the
entrainment of seedlings to different light-dark cycles, and
the knock-out of various key regulatory genes. Secondly,
to make the data generated from this network as realistic
as possible, we model gene and protein interactions as a
Markov jump process based on Michaelis-Menten kinet-
ics. This is to be preferred over mechanistic models based
on ordinary differential equations (used e.g. in [1]), as
it captures the intrinsic stochasticity of molecular interac-
tions. Thirdly, we assess the impact of missing values on
the reconstruction task. Protein-gene interactions affect
transcription rates, but both these rates as well as protein
concentrations might not be available from the wetlab as-
says. In such situations, mRNA concentrations have to
be taken as proxy for protein concentrations, and rates
have to be approximated by finite difference quotients.
For both approximations, we quantify the ensuing deteri-
oration in network reconstruction accuracy. Fourthly and
finally, we investigate the dependence of the network re-
construction accuracy on the degree of recurrency in the
network. The central circadian clock network is densely
connected with several tight feedback loops. However,
we expect the regulatory network, via which the clock
acts on carbon metabolism, to be sparser and with more
feed-forward structures. In our study we therefore quan-

1https://agronomics.ethz.ch/
2http://timing-metabolism.eu/
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Figure 1. Model network of the circadian clock in Arabidopsis thaliana based on [4] and subject to knock-outs.
Each graph shows interconnections of core circadian clock genes, where solid lines indicate protein influence on mRNA
transcription, and dashed lines represent protein modifications. The top left panel shows the wildtye; the legends of the
remaining panels indicate constant knock-outs of certain target proteins. Light influence is symbolized by a sun symbol,
and grey boxes highlight set of regulators or regulated components.

tify how the network reconstruction depends on the degree
of recurrency, and how the performance varies as critical
feedback cycles are pruned.

2. METHOD OVERVIEW

2.1. Notation

Throughout the paper we use the following notation: For
the regression models, which we will use to infer the
network interactions, we have target variablesyg (g =
1, . . . , N ), each representing the temporal mRNA concen-
tration gradient of a particular geneg. The realizations
of each target variableyg can then be written as a vector
yg = (yg,1, . . . , yg,T )

T, whereyg,t is the realization ofyg
in observationt. The potential covariates are either gene
or protein concentrations, and the task is to infer a set of
covariatesπg for each response variableyg. The collec-
tive set of covariates{π1, . . . ,πN} defines a regulatory
interaction network,M. In M the covariates and the tar-
get variables represent the nodes, and from each covariate
in πg a directed interaction (or ”edge”) is pointing to the
target nodeg. The complete set of regulatory observa-
tions is contained in the design matrixX. Realizations of
the covariates in the setπg are collected inXπg

, where
the columns ofXπg

are the realizations of the covariates
πg. Design matrixX andXπg

are extended by a constant

element equal to 1 for the intercept.

2.2. Sparse regression

A widely applied linear regression method that encour-
ages network sparsity is the Least Absolute Shrinkage and
Selection Operator (Lasso) introduced in [9]. The Lasso
optimizes the parameters of a linear model based on the
residual sum of squares subject to anL1-norm penalty
constraint on the regression parameters,‖wg‖1, which ex-
cludes the intercept [10]:

ŵg = argmin

{
||yg −XTwg||

2

2 + λ1‖wg‖1
}

(1)

whereλ1 is a regularisation parameter controlling the
strength of shrinkage. Equation (1) constitutes a con-
vex optimization problem, with a solution that tends to
be sparse. Two disadvantages of the Lasso are arbitrary
selection of single predictors from a group of highly cor-
relation variables, and saturation atT predictor variables.
To avoid these problems, the Elastic Net method was pro-
posed in [11], which combines the Lasso penalty with a
ridge regression penalty of the standard squaredL2-norm
‖wg‖22 exluding the intercept:

ŵg = argmin



||yg −XTwg ||22 + λ1‖wg‖1 + λ2‖wg‖22
ff

(2)
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Like Equation (1), Equation (2) constitutes a convex
optimization problem, which we solve with cyclical coor-
dinate descent [10] implemented in the R software pack-
ageglmnet . The regularization parametersλ1 and λ2

were optimized by 10-fold cross-validation.

2.3. Bayesian regression

In Bayesian regression we assume a linear regression
model for the targets:

yg|(wg, σg, πg) ∼ N (XT
πg
wg, σ

2
gI) (3)

whereσ2
g is the noise variance, andwg is the vector of

regression parameters, for which we impose a Gaussian
prior:

wg|(σg, δg, πg) ∼ N (0, δgσ
2
gI) (4)

δg can be interpreted as a ”signal-to-noise” hyperparame-
ter [12]. For the posterior distribution we get:

wg|(σg, δg, πg,yg) ∼ N (ΣgXπg
yg, σ

2
gΣg) (5)

whereΣ−1
g = δ−1

g I + Xπg
XT

πg
, and the marginal like-

lihood can be obtained by application of standard results
for Gaussian integrals [13]:

yg|(σg, δg, πg) ∼ N (0, σ2
g(I+ δgX

T
πg
Xπg

)) (6)

For σ−2
g and δ−2

g we impose conjugate gamma priors,
σ−2
g ∼ Gam(ν/2, ν/2), andδ−1

g ∼ Gam(αδ, βδ).3 The
integral resulting from the marginalization overσ−2

g ,

P (yg|πg, δg) =

∫ ∞

0

P (yg|σg, δg, πg)P (σ−2
g |ν)dσ−2

g

is then a multivariate Student t-distribution with a closed-
from solution (e.g. [13, 12]). Given the data for the po-
tential covariates ofyg, symbolicallyD, the objective is to
infer the set of covariatesπg from the marginal posterior
distribution:

P (πg|D,yg, δg) =
P (πg)P (yg|πg, δg)∑
π⋆
g
P (π⋆

g)P (yg|π⋆
g , δg)

(7)

where the sum is over all valid covariate setsπ⋆
g , P (πg) is

a uniform distribution over all covariate sets subject to a
maximal cardinality,|πg| ≤ 3, andδg is a nuisance param-
eter, which can be marginalized over. We sample sets of
regulators (or covariates)πg, signal-to-noise parameters
δg, and noise variancesσ2

g from the joint posterior dis-
tribution with Markov chain Monte Carlo (MCMC), fol-
lowing a Metropolis-Hastings within partially collapsed
Gibbs scheme [12].

3. DATA

We generated data from the central circadian gene regula-
tory network inArabidopsis thaliana, as proposed in [2]

3We set:ν = 0.01, αδ = 2, andβδ = 0.2, as in [12].
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Figure 2. Pairwise AUROC comparisons including all
regression methods. Covariate type: AUROC differ-
ences of protein against mRNA as covariates.Gradient
type: AUROC difference of fine against coarse gradient
for mRNAs (grey box) and proteins (white box). The re-
maining panels show the AUROC differences of various
pruned networks as displayed in Figure 1 versus wild-
type network for mRNA (grey boxes) and proteins (white
boxes) as covariates.

and depicted in the top right panel of Figure 1 . Follow-
ing [14], the regulatory processes of transcriptional regu-
lation and post-translational protein modification were de-
scribed with a Markov jump process based on Michaelis-
Menten kinetics, which defines how mRNA and protein
concentrations change in dependence on the concentra-
tions of other interacting components in the system (see
appendix of [2] for detailed equations). We simulated
mRNA and protein concentration time courses with the
Gillespie algorithm [15], using the Bio-PEPA modelling
framework [16]. To investigate the influence of recur-
rent interactions on the network reconstruction, we elimi-
nated feedback loops successively via targeted downregu-
lation of protein translation (knock-outs) and replacement
of corresponding concentrations by white Gaussian noise.
This gave us five modified network structures, as shown
in Figure 1. For each network type we created 11 inter-
ventions in consistency with standard biological protocols
(e.g. [17]). These include knock-outs of proteins ’GI’,
’LHY’, ’PRR7,PRR9’, ’TOC1’, and varying photoperi-
ods of 4, 6, 8, 12, or 18 hours of light in a 24-hour light-
dark (LD) cycle. For each intervention we simulated pro-
tein and mRNA concentration time courses over 6 days.
The first 5 days served as entrainment to the indicated LD
cycles. This was followed by a day of persistent dark-
ness (DD) or light (LL), during which concentrations of
mRNAs and proteins were measured in 2 hour intervals.
Combining 13 observations for each intervention yielded
143 observations in total for each network type. All con-
centrations were standardized to unit standard deviation.
The temporal mRNA concentration gradient was approx-
imated by a difference quotient of mRNA concentrations
based on two alternative temporal resolutions: at -2 and
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Figure 3. Method comparison. Mean AUROC values
as a measure of network reconstruction performance for
Lasso, Elastic Nets and Bayesian Regression applied to 6
distinct data types generated from networks shown in Fig-
ure 1. Empty symbols correspond to mRNA covariates,
filled symbols to protein covariates.

+2 hours (coarse gradient), and at -12 and +12 minutes
(fine gradient), followed by z-score standardization.

When trying to reconstruct the regulatory network
from the simulated data, we ruled out self-loops, such as
from LHY (modified) protein to LHY mRNA, and ad-
justed for mRNA degradation by enforcing mRNA self-
loops, such as from the LHY mRNA back to itself. Pro-
tein ’ZTL’ was included in the stochastic simulations, but
excluded from structure learning because it has no direct
effect on transcription. We carried out two different net-
work reconstruction tasks. The first was based on com-
plete observation, including both protein and mRNA con-
centration time series. The second was based on incom-
plete observation, where only mRNA concentrations were
available, but protein concentrations were systematicaly
missing. All network reconstructions were repeated on
five independent data instantiations.

4. RESULTS

For Bayesian regression, we compute the marginal poste-
rior probabilities of all potential interactions. For Lasso
and Elastic Nets, we record the absolute values of non-
zero regression parameters. Both measures provide a
means by which interactions between genes and proteins

AUROC values for decreasing Connectivity

Mean AUROC
0.5 0.6 0.7 0.8 0.9 1.0

coarse  
fine  

coarse  
fine  

coarse  
fine  

coarse  
fine  

coarse  
fine  

coarse  
fine  

Wildtype  

PRR7,PRR9  

PRR5,PRR7,PRR9  

TOC1  

PRR7,PRR9,TOC1  

PRR5,PRR7,PRR9,TOC1  Lasso
Elastic Net
Bayes

Figure 4. Performance comparison in dependence on
network connectivity. Mean AUROC values for sparser
networks in descending order for coarse (4 hour) and fine
(24 minutes) response gradients. Empty symbols corre-
spond to mRNA covariates, filled symbols to protein co-
variates.

can be ranked in terms of their significance or influence.
Given that the true network is known, this ranking defines
the Receiver Operating Characteristic (ROC) curve, where
the sensitivity or recall is plotted against the complemen-
tary specificity. By numerical integration we then obtain
the area under the curve (AUROC) as a global measure
of network reconstruction accuracy, where larger values
indicate a better performance, starting from AUROC=0.5
to indicate random expectation, to AUROC=1 for per-
fect network reconstruction. The results of our study are
shown in Figures 2, 3 and 4 and can be summarized as
follows.

Comparison between the methods.The performance
of Lasso and Elastic Net is very similar, while Bayesian
regression achieves slightly better results, especially when
protein concentrations are included and temporal gradi-
ents are computed at fine resolution. This indicates a jus-
tification of the higher computational costs of inference
based on MCMC.

Influence of gradient estimation.A finer temporal res-
olution for the gradient estimation tends to improve the
network reconstruction. This affects in particular data
for which the reconstruction based on coarse gradients
is close to random expectation, and Bayesian regression
models applied to protein concentrations. However, the
coarse gradient leads to a noticeable improvement in the
reconstruction with Bayesian regression based on mRNA
profiles alone for the sparser networks in Figure 1. Prelim-
inary investigations indicate that this unexpected trend is
related to confounding correlations between the profiles of
the two LHY isoforms, which are more important (propul-
sive) regulators in the sparser networks. However, a closer
analysis is still required.

Influence of missing protein concentrations.With the
noticeable exception of Bayesian regression applied to
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data with coarse gradient estimation, discussed above, the
inclusion of protein concentrations significantly improves
the network reconstruction accuracy. Our study allows a
quantification of the degree of improvement in terms of
AUROC score differences, with a mean improvement of
0.09 and a p-value of 8e-06 (from a two a sided t-test) in-
dicating significant higher values using protein covariates
(Figure 2).

Influence of feedback loops.An important aspect of
our study is the investigation of how the network recon-
struction accuracy depends on the connectivity of the true
network and the proportion of recurrent connections. To
this end we have successively pruned feedback interac-
tions, as shown in Figure 1. Figures 2 and 4 suggest that
there is a noticeable trend, with less recurrent networks
appearing to be easier to learn.

5. CONCLUSION

We have carried out a comparative evaluation of three es-
tablished machine learning methods for regulatory net-
work reconstruction (Lasso, Elastic Nets, Bayesian re-
gression) based on the central gene regulatory network of
the circadian clock inArabidopsis thaliana, and a series
of synthetic gene knock-outs that affect the proportion of
recurrent interactions. Our study allows a quantification
of the improvement in network reconstruction accuracy
as a consequence of including protein concentrations, the
dependence of the performance on the recurrent network
connectivity, and the influence of the numerical approxi-
mation of the gradient (i.e. transcription rates) by finite-
size difference quotients.
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